基于Python网络爬虫的IT招聘就业岗位可视化分析推荐系统

news2024/11/19 15:24:20

文章目录

  • 基于Python网络爬虫的IT招聘就业岗位可视化分析推荐系统
    • 项目概述
    • 招聘岗位数据爬虫分析
    • 系统展示
      • 用户注册登录
      • 系统首页
      • IT招聘数据开发岗-java
      • IT招聘数据开发岗-Python
      • IT招聘数据开发岗-Android
      • 算法方面
      • 运维方面
      • 测试方面
      • 招聘岗位薪资多维度精准预测
      • 招聘岗位分析推荐
    • 结语

基于Python网络爬虫的IT招聘就业岗位可视化分析推荐系统

项目概述

本项目旨在开发一个基于Python网络爬虫技术的IT招聘就业岗位可视化分析推荐系统。数据来源于Boss直聘招聘网站,采集到的各种岗位数据信息量合计在70万左右,数据精确真实可靠,本项目主要利用selenium、requests爬虫以及BeautifulSoup、numpy和Pandas等库进行数据的获取与分析处理。除此之外,项目还包括词云生成、数据分析、精准分析岗位算法推荐以及多维度薪资预测等功能,旨在为求职者提供全面的就业信息支持。

1.数据爬取与清洗:利用selenium和requests等库,结合BeautifulSoup解析HTML页面,从boss直聘等招聘网站上抓取相关数据。爬取的数据包括岗位名称、薪资、公司名称、公司规模、职位描述等。爬取后的数据需要进行清洗和预处理,确保数据的准确性和完整性。

2.词云生成:利用爬取的职位描述等文本数据,使用词云生成技术,将关键词可视化展示,帮助用户快速了解招聘岗位的主要特点和需求。

3.数据分析与可视化:利用Python的数据分析库(如Pandas、NumPy等)对爬取的数据进行分析,探索招聘市场的趋势、热门岗位、薪资水平等多维度、多层次招聘数据岗位关键信息。同时,利用可视化库(如Matplotlib、Echarts、Seaborn、Plotly等)生成直观、易于理解的图表和图形,提供给用户参考。

4.岗位算法推荐:根据用户输入的个人信息、技能和求职偏好,结合爬取的岗位数据,设计并实现精准分析岗位推荐给用户,为用户推荐匹配度较高的岗位,提高求职效率。

5.机器学习算法薪资预测:基于爬取的历史薪资数据以及其他相关因素,建立机器学习算法薪资预测模型,为用户提供对于不同岗位薪资水平的预测,帮助他们更好地评估职位的吸引力。

通过以上功能,本项目旨在为求职者提供一个综合性的就业信息平台,帮助他们更好地了解市场需求、制定求职策略,并通过推荐系统和薪资预测模型提供个性化的职位推荐和薪资参考,从而促进求职过程的顺利进行。

招聘岗位数据爬虫分析

通过selenium爬虫模块,能够快速准确的爬取所需要的详细招聘信息,可以精准爬取所需要的招聘岗位地区,城市,岗位名称,如’python’, ‘算法’, ‘测试’,'python’等不同IT岗位通过关键字都可以精确爬取。

然后将爬虫和数据处理接口全部封装到runtest脚本,完成所需要的招聘岗位数据爬虫及数据清洗。

#数据爬虫
 spider = bosszp_spider.Spider()
 spider.run()


#数据清洗
# #
handle = datahandle.DataHandle()
handle.run()

selenium爬取招聘岗位详细信息并进行数据清洗,这里我的chromedriver.exe版本是v110,一定选择浏览器所兼容支持的版本号。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

看下我之前爬取到的C语言招聘岗位详细数据信息
在这里插入图片描述

部分核心代码:

from selenium import webdriver
from bs4 import BeautifulSoup
import mysql


class Spider(object):

    def __init__(self):
        # 创建数据库对象
        self.__sql = mysql.MySql()
        # 无头浏览器开启
        self.__driver = webdriver.Chrome('spider/chromedriver.exe')
        # 隐式等待
        self.__driver.implicitly_wait(20)
        # 设置需要爬取的 【关键词】
        self.__keyword = ['c', 'java', 'python', 'web前端', '.net', 'u3d', 'c#', 'c++', '算法', 'ios', 'Android']
        #self.__keyword = ['.net', 'u3d', 'c#', 'c++', '算法', 'ios', 'Android']
        #self.__keyword = ['测试', '运维','算法', 'ios', 'Android']
        # self.__keyword = ['python']
        # self.__keyword = ['python', '算法', '测试']
        # self.__keyword = ['Android']

    def __del__(self):
        # 关闭无头浏览器,减少内存损耗
        self.__driver.quit()

    # 设置爬取关键词
    def setKeyword(self, keyword):
        self.__keyword = []
        if isinstance(keyword, list):
            self.__keyword = keyword
        else:
            var = str(keyword)
            var.strip()
            if " " in var:
                keyword_list = var.split(' ')
                self.__keyword = keyword_list
            else:
                self.__keyword.append(var)

    # 获取所有关键词
    def getKeyword(self):
        return self.__keyword

    # 爬虫方法
    def run(self):

        print(">>>开始获取...")

        # 城市json
        # 在下方设置需要爬取的【城市】

        cities = [{"name": "北京", "code": 101010100, "url": "/beijing/"},
                  {"name": "上海", "code": 101020100, "url": "/shanghai/"},
                  {"name": "广州", "code": 101280100, "url": "/guangzhou/"},
                  {"name": "深圳", "code": 101280600, "url": "/shenzhen/"},
                  # {"name": "杭州", "code": 101210100, "url": "/hangzhou/"},
                  # {"name": "天津", "code": 101030100, "url": "/tianjin/"},
                  # {"name": "西安", "code": 101110100, "url": "/xian/"},
                  # {"name": "苏州", "code": 101190400, "url": "/suzhou/"},
                  # {"name": "武汉", "code": 101200100, "url": "/wuhan/"},
                  # {"name": "厦门", "code": 101230200, "url": "/xiamen/"},
                  # {"name": "长沙", "code": 101250100, "url": "/changsha/"},
                  # {"name": "成都", "code": 101270100, "url": "/chengdu/"},
                  # {"name": "郑州", "code": 101180100, "url": "/zhengzhou/"},
                  # {"name": "重庆", "code": 101040100, "url": "/chongqing/"},
                  # {"name": "佛山", "code": 101280800, "url": "/foshan/"},
                  # {"name": "合肥", "code": 101220100, "url": "/hefei/"},
                  # {"name": "济南", "code": 101120100, "url": "/jinan/"},
                  # {"name": "青岛", "code": 101120200, "url": "/qingdao/"},
                  # {"name": "南京", "code": 101190100, "url": "/nanjing/"},
                  # {"name": "东莞", "code": 101281600, "url": "/dongguan/"},
                  # {"name": "福州", "code": 101230100, "url": "/fuzhou/"}
                  ..............................................
                  ]
        # 总记录数
        all_count = 0
        # 关键词爬取
        for key in self.__keyword:
            print('>>>当前获取关键词: "{}"'.format(key))
            # 单个关键词爬取记录数
            key_count = 0
            # 每个城市爬取
            for city in cities:
                print('>>>当前获取城市: "{}"'.format(city['name']))
                # 记录每个城市爬取数据数目
                city_count = 0
                # 只获取前十页
                urls = ['https://www.zhipin.com/c{}/?query={}&page={}&ka=page-{}'
                            .format(city['code'], key, i, i) for i in range(1, 11)]
                # 逐条解析
                for url in urls:
                    self.__driver.get(url)
                    # 获取源码,解析
                    html = self.__driver.page_source
                    bs = BeautifulSoup(html, 'html.parser')
                    # 获取搜索框,用于判断是否被异常检测
                    flag = bs.find_all('div', {'class': 'inner home-inner'})
                    # 主要信息获取
                    job_all = bs.find_all('div', {"class": "job-primary"})


                    # 解析页面
                    for job in job_all:
                        # 工作名称
                        job_name = job.find('span', {"class": "job-name"}).get_text()
                        # 工作地点
                        job_place = job.find('span', {'class': "job-area"}).get_text()
                        # 工作公司
                        job_company = job.find('div', {'class': 'company-text'}).find('h3', {'class': "name"}).get_text()
                        # 公司规模
                        job_scale = job.find('div', {'class': 'company-text'}).find('p').get_text()
                        # 工作薪资
                        job_salary = job.find('span', {'class': 'red'}).get_text()
                        # 工作学历
                        job_education = job.find('div', {'class': 'job-limit'}).find('p').get_text()[-2:]
                        # 工作经验
                        job_experience = job.find('div', {'class': 'job-limit'}).find('p').get_text()
                        # 工作标签
                        job_label = job.find('a', {'class': 'false-link'}).get_text()
                        # 技能要求
                        job_skill = job.find('div', {'class': 'tags'}).get_text().replace("\n", " ").strip()
                        # 福利
                        job_welfare = job.find('div', {'class': 'info-desc'}).get_text().replace(",", " ").strip()

                        #职位类型 追加
                        type=key

                        # 数据存储
                        self.__sql.saveData(job_name, job_place, job_company, job_scale, job_salary, job_education,
                                             job_experience,
                                             job_label,
                                             job_skill,
                                             job_welfare,type)
                            .......

最后爬取不同城市的详细真实IT招聘岗位数据大约70万条,爬的时间也挺久。

在这里插入图片描述

系统展示

启动项目 进入系统

http://127.0.0.1:8080/login.html

在这里插入图片描述

用户注册登录

在这里插入图片描述

系统首页

在这里插入图片描述

在这里插入图片描述

IT招聘数据开发岗-java

在这里插入图片描述

IT招聘数据开发岗-Python

在这里插入图片描述

IT招聘数据开发岗-Android

在这里插入图片描述

非开发岗我这里爬取了3个,想爬取更多岗位,可以直接修改爬虫代码里面参数信息就行。

算法方面

在这里插入图片描述

运维方面

在这里插入图片描述

测试方面

在这里插入图片描述

招聘岗位薪资多维度精准预测

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

招聘岗位分析推荐

在这里插入图片描述

在这里插入图片描述

结语

后面有时间和精力也会分享更多关于大数据领域方面的优质项目内容,感谢各位的喜欢与支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1466537.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《TCP/IP详解 卷一》第6章 DHCP

目录 6.1 引言 6.2 DHCP 6.2.1 地址池和租用 6.2.2 DHCP和BOOTP消息格式 6.2.3 DHCP和BOOTP选项 6.2.4 DHCP协议操作 6.2.5 DHCPv6 6.2.6 DCHP中继 6.2.7 DHCP认证 6.2.8 重新配置扩展 6.2.9 快速确认 6.2.10 位置信息(LCI和LoST) 6.2.11 移…

GPT-SoVITS 快速声音克隆使用案例:webui、api接口

参考: https://github.com/RVC-Boss/GPT-SoVITS 环境: Python 3.10 PyTorch 2.1.2, CUDA 12.0 安装包: 1、使用: 1)下载项目 git clone https://github.com/RVC-Boss/GPT-SoVITS.git2)下载预训练模型 https://huggingface.co/lj1995/GPT-SoVITS 下载模型文件放到GPT…

Vue2响应式原理分析(数据代理与数据劫持)

综述: 我们都知道,每个Vue的应用都是通过new一个Vue构造函数从而创造出来一个vm实例对象,el(elect)配置项为通过id选择器#root选择index页面中的根dom元素进行绑定,data配置项则为vue模板中用到的源数据。 …

python 层次分析(AHP)

文章目录 一、算法原理二、案例分析2.1 构建指标层判断矩阵2.2 求各指标权重2.2.1 算术平均法(和积法)2.2.2 几何平均法(方根法) 2.3 一致性检验2.3.1 求解最大特征根值2.3.2 求解CI、RI、CR值2.3.3 一致性判断 2.4 分别求解方案层…

算法沉淀——FloodFill 算法(leetcode真题剖析)

算法沉淀——FloodFill 算法 01.图像渲染02.岛屿数量03.岛屿的最大面积04.被围绕的区域05.太平洋大西洋水流问题06.扫雷游戏07.衣橱整理 Flood Fill(泛洪填充)算法是一种图像处理的基本算法,用于填充连通区域。该算法通常从一个种子点开始&am…

【DDD】学习笔记-薪资管理系统的测试驱动开发2

测试驱动开发的过程 满足简单设计并编写新的测试 当代码满足重用性和可读性之后,就应遵循简单设计的第四条原则“若无必要,勿增实体”,不要盲目地考虑为其增加新的软件元素。这时,需要暂时停止重构,编写新的测试。 …

2.23数据结构

单向循环链表 创建单向循环链表,创建节点 ,头插,按位置插入,输出,尾删,按位置删除功能 //main.c #include "loop_list.h" int main() {loop_p Hcreate_head();insert_head(H,12);insert_head(…

计算机网络-网络层,运输层,应用层

网络层/网际层 网络层的主要任务包括: 提供逻辑上的端到端通信:网络层负责确定数据的传输路径,使数据能够从源主机传输到目标主机,即实现端到端的通信。数据包的路由和转发:网络层根据目标主机的地址信息&#xff0c…

vue项目使用vue2-org-tree

实现方式 安装依赖 npm i vue2-org-tree使用的vue页面引入 <template><div class"container"><div class"oTree" ><vue2-org-tree name"test":data"data":horizontal"horizontal":collapsable"…

【服务器数据恢复】通过reed-solomon算法恢复raid6数据的案例

服务器数据恢复环境&#xff1a; 一台网站服务器中有一组由6块磁盘组建的RAID6磁盘阵列&#xff0c;操作系统层面运行MySQL数据库和存放一些其他类型文件。 服务器故障&#xff1a; 该服务器在工作过程中&#xff0c;raid6磁盘阵列中有两块磁盘先后离线&#xff0c;不知道是管理…

LabVIEW开发FPGA的高速并行视觉检测系统

LabVIEW开发FPGA的高速并行视觉检测系统 随着智能制造的发展&#xff0c;视觉检测在生产线中扮演着越来越重要的角色&#xff0c;尤其是在质量控制方面。传统的基于PLC的视觉检测系统受限于处理速度和准确性&#xff0c;难以满足当前生产需求的高速和高精度要求。为此&#xf…

【python】yolo目标检测模型转为onnx,及trt/engine模型的tensorrt轻量级模型部署

代码参考&#xff1a; Tianxiaomo/pytorch-YOLOv4: PyTorch ,ONNX and TensorRT implementation of YOLOv4 (github.com)https://github.com/Tianxiaomo/pytorch-YOLOv4这个大佬对于各种模型转化写的很全&#xff0c;然后我根据自己的需求修改了部分源码&#xff0c;稍微简化了…

【区块链】联盟链

区块链中的联盟链 写在最前面**FAQs** 联盟链&#xff1a;区块链技术的新兴力量**联盟链的定义****联盟链的技术架构**共识机制智能合约加密技术身份认证 **联盟链的特点**高效性安全性可控性隐私保护 **联盟链的应用场景****金融服务****供应链管理****身份验证****跨境支付**…

VSCODE include错误 找不到 stdio.h

解决办法&#xff1a; Ctrl Shift P 打开命令面板&#xff0c; 键入 “Select Intellisense Configuration”&#xff08;下图是因为我在写文章之前已经用过这个命令&#xff0c;所以这个历史记录出现在了第一行&#xff09; 再选择“Use gcc.exe ”&#xff08;后面的Foun…

网络原理-TCP/IP(7)

目录 网络层 路由选择 数据链路层 认识以太网 以太网帧格式 认识MAC地址 对比理解MAC地址和IP地址 认识MTU ARP协议 ARP协议的作用 ARP协议工作流程 重要应用层协议DNS(Domain Name System) DNS背景 NAT技术 NAT IP转换过程 NAPT NAT技术的优缺点 网络层 路由…

如何将建筑白模叠加到三维地球上?

​ 通过以下方法可以将建筑白模叠加到三维地球上。 方法/步骤 下载三维地图浏览器 http://www.geosaas.com/download/map3dbrowser.exe&#xff0c;安装完成后桌面上出现”三维地图浏览器“图标。 2、双击桌面图标打开”三维地图浏览器“ 3、点击“建筑白模”菜单&…

基于java(Springboot)学生信息管理和新生报到系统设计与实现

博主介绍&#xff1a;黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者&#xff0c;CSDN博客专家&#xff0c;在线教育专家&#xff0c;CSDN钻石讲师&#xff1b;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程&#xff…

康威生命游戏

康威生命游戏 康威生命游戏(Conway’s Game of Life)是康威发明的细胞自动机。 生命游戏有几个简单的规则&#xff1a; 细胞有两种状态&#xff0c;存活或死亡&#xff0c;每个细胞以自身为中心与周围的八格细胞互动。 对于存活的细胞&#xff1a; 当周围的细胞过少(<2)或…

C# cass10 面积计算

运行环境Visual Studio 2022 c# cad2016 cass10 通过面积计算得到扩展数据&#xff0c;宗地面积 &#xff0c;房屋占地面积&#xff0c;房屋使用面积 一、主要步骤 获取当前AutoCAD应用中的活动文档、数据库和编辑器对象。创建一个选择过滤器&#xff0c;限制用户只能选择&q…

C#最优队列最小堆小顶堆大顶堆小根堆大根堆PriorityQueue的使用

最优队列有多种叫法&#xff0c;什么小根堆&#xff0c;大根堆&#xff0c;小顶堆&#xff0c;大顶堆。 队列分多种&#xff0c;线性队列&#xff08;简单队列&#xff09;&#xff0c;循环队列&#xff0c;最优队列等等。 最优队列&#xff0c;可以看作堆叠箱子&#xff0c;…