Stable Diffusion——文生图界面参数讲解与提示词使用技巧

news2024/11/13 13:49:31

Clip终止层数

在这里插入图片描述

什么是Clip

CLIP(Contrastive Language-Image Pretraining)是由OpenAI于2021年开发的一种语言图像对比预训练模型。其独特之处在于,CLIP模型中的图像和文本嵌入共享相同的潜在特征空间,这使得模型能够直接在图像和文本之间进行对比学习。

CLIP模型通过训练使相关的图像和文本在特征空间中更紧密地结合在一起,同时将不相关的图像在特征空间中分开。这种对比学习的方式使得CLIP模型能够理解图像和文本之间的语义关系,并在各种视觉和语言任务上取得优异的表现,如图像分类、文本检索、图像生成等。CLIP的出现对于促进图像和文本之间的跨模态理解和交互具有重要意义。

Clip的作用

CLIP模型的作用是建立标签(关键词)和图像之间的关系,可以理解为SD数据库中的处理模块。当调整CLIP模型中的参数值时,会影响标签和图像之间的关系,具体地说,如果参数值较高,标签和图像之间的关系就会变得越来越低,反之亦然。这种关系是反比例的,因此一般不建议将参数值调得过高。

举例来说,当参数值在0到4之间时,图像的细节已经相当不错了;当参数值增加到6时,图像仍然是可以接受的。然而,当参数值增加到8时,图像可能会变得奇怪,整体标签和图像之间的关系会降低。,当增加到最大的12时,整体生成的图像与标签的关联性会降到最低。在这种情况下,模型可能会更多地依赖于其自身的理解,而忽略输入的标签,导致生成的图像与标签不相符。

可以看下面的例子,正向提示词:1girl,pink hair,upper_body,green_shirt,sky blue eyes

Clip = 1时:
在这里插入图片描述
Clip = 4时:
在这里插入图片描述
Clip = 8时:
在这里插入图片描述
Clip =12时:
在这里插入图片描述

因此,建议将CLIP模型的参数值保持在较低的范围内,通常选择1到4之间的数值即可。在大多数情况下,这个范围已经能够满足需求,不需要调整得太高。

提示词

什么是提示词

提示词通常指的是在生成模型中用于指导生成过程的输入信息,它可以是一段文本、一个单词、一个短语,或者是一些标签或关键词。在生成任务中,提示词通常用于定义所需生成内容的方向、主题或特征。提示词的选择和质量直接影响生成结果的准确性和合理性。

举例来说,在图像生成任务中,提示词可以是描述图像内容的关键词或短语,如“树木”、“夏天”、“海滩”等。在文本生成任务中,提示词可以是一段描述待生成文本的开头部分,或者是一个特定主题的关键词列表。在绘画任务中,提示词可以是描述绘画主题、色彩、风格等的关键词或短语。

提示词语的性质

在Stable Diffusion中提示词可以分为两类:正向提示词和反向提示词。正向提示词用于指定希望在生成图片或文本时出现的内容或特征,而反向提示词则用于指定不希望出现的内容或特征。

举例来说,如果您想要生成一张有女孩的图片,那么您可以将“girl”作为正向提示词;同时,如果您不想让图片中出现男孩,您可以将“boy”作为反向提示词。

在AI绘画中,常常会出现一些单人多头,多手指,多脚的现象,这时候,就可以在反向提示词里加“extra hand”“extra leg”以避免生成多头多手指、多脚多腿的情况,或者把手画成脚的,如下图:
在这里插入图片描述
在这里插入图片描述

标签格式

标签(tag)的格式可以直接影响到生成结果的质量和准确性。关于标签格式的说明:

  1. 语言:目前大多数提示词只支持英文,因此英文是必备的。尽管有一些能够将中文转换为英文的插件。如我之前博客里面提到的 “prompt-all-in-one”

  2. 格式:标签可以以单词、短语或句子的形式输入。推荐使用短句,因为短句更具有上下文和语境,可以帮助模型更准确地理解需求。

  3. 分割符号:标签之间使用逗号进行分割。这样做有助于区分不同的标签,并告诉系统如何解析和理解标签。

  4. 关键词顺序:将重要的关键词放在前面,因为它们的权重会更高,系统会优先识别和处理这些关键词。这尤其适用于描述图像主体或重要元素的标签。

  5. 调整标签顺序:如果发现某些关键词没有得到充分识别,可以尝试将其提前放置,以提高其识别概率。

标签的描述顺序

内容性的tag通常用于描述图像内容特征,具体的描述内容会根据不同的场景和需求而定。例如,在描述人物写实的场景中,可以按照以下顺序进行描述:

  1. 人物和表情:人物的外貌特征、面部表情等。
  2. 服装特征:人物所穿着的服装样式、颜色等。
  3. 场景环境:人物所处的场景背景、环境特征。
  4. 镜头:图像的拍摄角度、视角等。
  5. 灯光:图像的光线照射情况。
  6. 画面细节:画面质量、自动提取的细节(auto details in instant details)。
  7. 渲染器引擎:Octane Render、Unity的CG渲染。
  8. 画面的风格:插画风格、油画风格、写实风格
  9. 其他元素细节:描述与人物或场景相关的其他细节,如道具、背景元素等。

关于tag的中英对照,有国内大神做了个详细的表,对AI绘画或者想要对照表的都可以加:566929147 企鹅群一起学习讨论。
在这里插入图片描述

标签权重

在生成图像时可以通过调整不同标签的权重来影响生成结果的内容和特征。以下是关于权重的几种常见用法:

  1. 括号法则:使用大括号、中括号和小括号来调整权重。在标签周围添加括号可以增加其权重。例如,使用一个括号会使权重增加1.1倍,两个括号会使权重增加1.1的平方倍,依此类推。不过,添加过多的括号可能会使权重变得难以控制和理解,因此建议谨慎使用。
    () :增加1.1倍
    {} :增加1.05倍
    [] : 减少1.1倍
    例子:当减少tag的权重“halfling”没有减少时,生成的图像:
    1girl,pink hair,(sky blue eyes),{face the lens},white shirt,jeans,halfling
    在这里插入图片描述
    当减少tag的权重"[[halfling]]"减少时,生成的图像
    1girl,pink hair,(sky blue eyes),{face the lens},white shirt,jeans,[[halfling]],
    在这里插入图片描述

  2. 数字法则:使用数字来表示权重。在标签后面加上一个数字(例如1.3)可以增加其权重,而使用小于1的数字可以减少其权重。这种方法相对简单明了,更容易掌握和调整。
    (tag:1.2):增加1.2倍
    (tag:0.6):减少0.6倍

  3. AND方法:通过使用AND连接不同的标签来实现它们的混合。例如,将“tiger”和“cow”用AND连接起来,生成的图像会混合展现老虎和牛的特征。这种方法能够产生有趣的混合效果,但需要注意保持标签的适度和协调。
    **tag1 AND tag2 ** : 不同元素与主体混合
    例子:生成中性的人物,注意AND必须是大写的
    girl AND boy,pink hair,(sky blue eyes),{face the lens},white shirt,jeans,halfling,
    在这里插入图片描述

  4. 混合:使用中括号和竖线来指定标签的交替渲染顺序。通过在标签之间使用中括号和竖线“|”,可以实现不同标签在渲染过程中的交替出现,从而实现标签的混合效果。这种方法能够产生更加复杂和多样化的图像效果。
    [tag1 | tag2 ] : 会隔一步渲染tag
    例子:生成狐狸女孩
    [girl | fox},pink hair,(sky blue eyes),{face the lens},white shirt,jeans,halfling,
    在这里插入图片描述

迭代步数

在这里插入图片描述
采样步数指的是在生成图像时模型所进行的迭代步数。这个值的范围通常是从1到150。调整这个值会影响生成图像的细节程度以及生成速度。

  • 增加采样步数:增加采样步数会增加生成图像的细节,使其更加清晰和精细。然而,这也会导致生成过程变慢,因为模型需要更多的迭代来生成更精细的图像。如果采样步数设置得太高,生成图像可能需要较长的时间,特别是对于性能较低的设备。

  • 减少采样步数:减少采样步数会降低生成图像的细节,可能导致图像模糊或含有噪点。然而,生成速度会更快,因为模型需要较少的迭代来生成图像。

一般建议在制作图像时将采样步数控制在20到40之间,这样可以在保持一定细节的同时,保持生成速度较快。如果采样步数设置得太高,可能会导致生成时间过长,因此需要根据设备性能和需求来进行调整。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
观察生成图像的不同采样步数所带来的效果变化,可得看出:

  1. 第二步到第八步:在这个阶段,图像经历了一个去噪的过程。这意味着模型在这些步骤中尝试去除图像中的噪点,使图像变得更清晰、更干净。

  2. 第十步:在第十步时,图像已经成型,意味着在此时点图像已经具备了基本的清晰度和可用性。虽然一些细节可能还不够完善,但整体效果已经可以接受。

  3. 第25步到第40步:在这个阶段,细节变化开始变得更加显著。采样步数在这个范围内通常足以生成具有足够细节的图像。

通常情况下,采样步数在20左右已经足够生成具有合理细节的图像。如果希望图像更加清晰和精细,可以将采样步数适度增加到40左右。然而,超过40步可能会带来较小的收益,但会增加生成时间,因此需要权衡时间和图像质量之间的关系。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1464383.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

嵌入式培训机构四个月实训课程笔记(完整版)-Linux ARM驱动编程第八天-高级驱动framebuffer(物联技术666)

链接:https://pan.baidu.com/s/1cd7LOSAvmPgVRPAyuMX7Fg?pwd1688 提取码:1688 帧缓冲(framebuffer)设备应用于linux显示技术方面。因为linux的显示平台已经全部基于framebuffer,所以目前在linux环境下开发图形化界面、…

电脑死机卡住怎么办 电脑卡住鼠标也点不动的解决方法

在我们使用电脑的过程中,可能由于电脑硬件或者软件的问题,偶尔会出现电脑卡住的情况,很多电脑小白都不知道电脑卡住了怎么办,鼠标也点不动,键盘也没用,一旦发生了这种情况,大家可以来参考一下小编分享的电脑死机卡住的解决方法。 电脑卡住鼠标也点不动的解决方法 方…

java替换jar中的class文件

1、编译好class文件2、找到需要修改class文件的路径3、解压需要替换的文件4、上传编译后的class文件5、重新压缩 在调整java代码过程中会遇到需要改jar包中的class文件的情况,改了如何替换呢? 1、编译好class文件 将需要修改的class文件代码复制到java编…

亿道丨三防平板丨加固平板丨三防加固平板丨改善资产管理

库存资产管理中最重要的部分之一是准确性;过时的库存管理技术会增加运输过程中人为错误、物品丢失或纸张损坏的风险。如今随着三防平板电脑的广泛使用,库存管理也迎来了好帮手,通过使用三防平板电脑能够确保库存管理、数据存储和记录保存的准…

R语言【base】——abs(),sqrt():杂项数学函数

Package base version 4.2.0 Description abs(x) 计算 x 的绝对值,sqrt(x) 计算 x 的正平方根。 Usage abs(x) sqrt(x) Arguments 参数【x】:一个数值或复数向量或数组。 Details 这些都是内部泛型原语函数:可以为它们单独定义方法,也可以…

Python 光速入门课程

首先说一下,为啥小编在即PHP和Golang之后,为啥又要整Python,那是因为小编最近又拿起了 " 阿里天池 " 的东西,所以小编又不得不捡起来大概五年前学习的Python,本篇文章主要讲的是最基础版本,所以比…

基于springboot+vue的靓车汽车销售网站(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

荧光淬灭剂Tide Quencher 2酸,Tide Quencher 2 acid ,能够与荧光物质发生反应

您好,欢迎来到新研之家 文章关键词:荧光淬灭剂Tide Quencher 2酸,Tide Quencher 2 acid ,TQ2 acid 一、基本信息 产品简介:Tide Quencher 2 acid is highly favored in the field of scientific experiments due to…

大语言模型的开山之作—探秘GPT系列:GPT-1-GPT2-GPT-3的进化之路

模型模型参数创新点评价GPT1预训练微调, 创新点在于Task-specific input transformations。GPT215亿参数预训练PromptPredict, 创新点在于Zero-shotZero-shot新颖度拉满,但模型性能拉胯GPT31750亿参数预训练PromptPredict, 创新点…

2024年1月京东冰箱行业数据分析:TOP10品牌销量及销额排行榜

鲸参谋监测的京东平台1月份冰箱市场销售数据已出炉! 根据鲸参谋电商数据分析平台显示,今年1月份,京东平台上冰箱的销量超105万件,环比上个月增长约40%,同比去年下滑18%;销售额约30亿元,环比上个…

linux系统消息中间件rabbitmq普通集群的部署

rabbitmq普通集群的部署 普通集群准备环境查询版本对应安装rabbitmq软件启动创建登录用户开启用户远程登录查看端口 部署集群创建数据存放目录和日志存放目录:拷⻉erlang.cookie将其他两台服务器作为节点加⼊节点集群中查看集群状态创建新的队列 普通集群准备环境 配置hosts⽂件…

2.22驱动作业

1.使用GPIO子系统编写LED灯驱动&#xff0c;应用程序测试 2.注册三个按键的中断&#xff0c;只需要写内核代码 1.代码 应用程序&#xff1a; #include<stdlib.h> #include<stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fc…

Maven depoly:Skipping artifact deployment

问题描述&#xff1a; 使用IDEA执行mvn depoly将本地开发的模块发布到Maven私服时&#xff0c;一直提示&#xff1a;Skipping artifact deployment&#xff0c;自动跳过了depoly部署阶段。 问题分析 Maven构建生命周期中的每一个阶段都是由对应的maven插件执行具体工作的。既然…

Spring AOP 实现原理详解之 CGLIB 动态代理

目录 一. 前言 1.1. Spring AOP 和 CGLIB 是什么关系&#xff1f; 二. CGLIB 代理示例 2.1. pom 包依赖 2.2. 定义实体 2.3. 被代理的类 2.4. CGLIB 代理 2.5. 使用代理 三. CGLIB 代理的流程 四. Spring AOP 中 CGLIB 代理的实现 一. 前言 CGLIB 是一个强大的高性能…

Portraiture有哪些版本?2024最新版本如何下载

Portraiture有多个版本&#xff0c;其中常用的版本包括Portraiture 3和Portraiture 4。 Portraiture 3&#xff1a;该版本支持Adobe Photoshop CC 2019以上版本和Lightroom CC 2015以上版本&#xff0c;适用于Windows 11/10和macOS 11 Big Sur、12 Monterey、13 Ventura等操作…

Java字符集【ASCII,GBK,Unicode】

1.常见字符集 1.标准ASCII字符集 美国信息交换标准代码&#xff0c;包括了英文、符号等。 标准ASCII使用1个字节存储一个字符&#xff0c;首位是0&#xff0c;总共可表示128个字符&#xff0c;对美国人来说完全够用。 2.GBK&#xff08;汉字内码扩展规范&#xff0c;国标&#…

时域相位分析技术 和空域相位分析技术

l) 时域相位分析技术 在光 学测量 的许 多情况 下 &#xff0c; 时变图像信 号 的背景光 强 与调制 度可 以看作是 常 数 &#xff0c;并且 其光 强 随时 间 的变化也满足 正 弦条件 。 那 么针 对某 一 空 间采样 点 (x &#xff0c;y) &#xff0c; 某时刻 采 集到 的光 强 可…

PYTHON-使用正则表达式进行模式匹配

目录 Python 正则表达式Finding Patterns of Text Without Regular ExpressionsFinding Patterns of Text with Regular ExpressionsCreating Regex ObjectsMatching Regex ObjectsReview of Regular Expression MatchingMore Pattern Matching with Regular ExpressionsGroupi…

基于springboot+vue的酒店客房管理系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

【数据结构初阶 6】二叉树:堆的基本操作 + 堆排序的实现

文章目录 &#x1f308; Ⅰ 二叉树的顺序结构&#x1f308; Ⅱ 堆的概念与性质&#x1f308; Ⅲ 堆的基本操作01. 堆的定义02. 初始化堆03. 堆的销毁04. 堆的插入05. 向上调整堆06. 堆的创建07. 获取堆顶数据08. 堆的删除09. 向下调整堆10. 判断堆空 &#x1f308; Ⅳ 堆的基本…