使用傅里叶实现100倍的压缩效果(附Python源码)

news2024/11/25 12:43:33

傅里叶变换(Fourier Transform)是一种将一个函数(在时间或空间域)转换为另一个函数(在频率域)的数学变换方法。它在信号处理、图像处理、通信等领域有广泛应用。

实现过程

将傅里叶系数核心的1%保留,其余全部删除。
然后利用这留下的1%复原原始图像,得到相对清晰的原始图像。显示原始图像,傅里叶、仅保留1%的傅里叶,复原图像。

Python实现

本部分我们使用Python实现这一过程,并观察实际的结果。

Python实现代码

# -*- coding: utf-8 -*-
"""
Created on Sun Feb 18 18:09:22 2024

@author: 李立宗

公众号:计算机视觉之光

知识星球:计算机视觉之光

"""

# -*- coding: utf-8 -*-
"""
Created on Sun Feb 18 18:09:22 2024

@author: 李立宗

公众号:计算机视觉之光

知识星球:计算机视觉之光

"""

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

# 步骤1 - 加载并显示原始图像
original_image = Image.open('lena.bmp').convert('L')  # 将图像转换为灰度
plt.figure(figsize=(6, 6))
plt.imshow(original_image, cmap='gray')
plt.title('Original Image')
plt.show()

# 步骤2 - 计算图像的二维傅里叶变换,并中心化
f_transform = np.fft.fft2(original_image)
f_shifted = np.fft.fftshift(f_transform)
magnitude_spectrum = 20*np.log(np.abs(f_shifted))
plt.figure(figsize=(6, 6))
plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum')
plt.show()

# 步骤3 - 保留傅里叶变换系数核心的1%
def keep_central_percentage(f_data, percentage=0.01):
    # 创建一个只有中心1%区域是1, 其余是0的掩模
    rows, cols = f_data.shape
    crow, ccol = rows // 2 , cols // 2
    mask = np.zeros((rows, cols), np.uint8)
    mask[crow-int(rows*np.sqrt(percentage))//2:crow+int(rows*np.sqrt(percentage))//2, ccol-int(cols*np.sqrt(percentage))//2:ccol+int(cols*np.sqrt(percentage))//2] = 1
    return f_data * mask
    
f_central = keep_central_percentage(f_shifted)
magnitude_spectrum_central = 20*np.log(np.abs(f_central))
plt.figure(figsize=(6, 6))
plt.imshow(magnitude_spectrum_central, cmap='gray')
plt.title('Central 1% Magnitude Spectrum')
plt.show()

# 步骤4 - 使用逆变换复原图像
f_ishifted = np.fft.ifftshift(f_central)
img_back = np.fft.ifft2(f_ishifted)
img_back = np.abs(img_back)
plt.figure(figsize=(6, 6))
plt.imshow(img_back, cmap='gray')
plt.title('Reconstructed Image from 1% Coefficients')
plt.show()

代码分析

在这段代码中,keep_central_frequency函数用于创建掩码,在中心周围创建一个指定百分比的圆形区域,并将这个区域外的部分置零。请务必替换代码中的img_path变量值为你将要处理的图像的实际路径。

注意:傅里叶变换的结果(fshift)是复数数组,而掩码是实数数组。当我们实行点乘运算时,只有那些直径中心周围特定百分比的傅里叶系数被保留下来。之后,我们执行逆傅里叶变换并取其绝对值来得到重建后的图像。

最后,使用matplotlib库来显示图像,其中包括原始图像、傅里叶变换的幅度谱、只保留中心1%频率后的幅度谱比和由1%的傅里叶系数重建的图像。这里使用了cmap='gray’来展示灰度图像。

过程及结果显示

下面是原始图像及对应的傅里叶变换图谱
在这里插入图片描述
下面是1%的低频信号,复原图像:
在这里插入图片描述

结论

从上述变化您可以看到,即使仅仅保留1%的低频,仍旧能够复原识别度较高的原始图像。

相关知识点

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

参考文献

1、OpenCV轻松入门
李立宗,OpenCV轻松入门,电子工业出版社,2023
在这里插入图片描述

2、计算机视觉40例
李立宗,计算机视觉40例,电子工业出版社,2022
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1457178.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

挑战杯 地铁大数据客流分析系统 设计与实现

文章目录 1 前言1.1 实现目的 2 数据集2.2 数据集概况2.3 数据字段 3 实现效果3.1 地铁数据整体概况3.2 平均指标3.3 地铁2018年9月开通运营的线路3.4 客流量相关统计3.4.1 线路客流量排行3.4.2 站点客流量排行3.4.3 入站客流排行3.4.4 整体客流随时间变化趋势3.4.5 不同线路客…

【Redis】理论进阶篇------Redis的持久化

一、前言 前面学习了Redis的相关的十大数据类型以及用SpringBoot集成我们的Redis的工具代码的书写。从这篇文章开始,就会从Redis相关的一些理论(也是面试和工作的热点知识)如:Redis的持久化、Redis的订阅发布模型、Redis集群环境搭…

RF框架自定义测试库开发

🔥 交流讨论:欢迎加入我们一起学习! 🔥 资源分享:耗时200小时精选的「软件测试」资料包 🔥 教程推荐:火遍全网的《软件测试》教程 📢欢迎点赞 👍 收藏 ⭐留言 &#x1…

Audition 2023(Au)下载安装及详细安装教程

Audition(Au)的介绍 Adobe Audition(简称Au,原名Cool Edit Pro)是由Adobe公司开发的一个专业音频编辑和混合环境。Audition专为在照相室、广播设备和后期制作设备方面工作的音频和视频专业人员设计,可提供先进的音频混合、编辑、控…

《汇编语言》- 读书笔记 - 第10章-CALL 和 RET 指令

《汇编语言》- 读书笔记 - 第10章-CALL 和 RET 指令 10.1 ret 和 retf检测点 10.1 10.2 call 指令10.3 依据位移进行转移的 call 指令检测点 10.2 10.4 转移的目的地址在指令中的 call 指令检测点 10.3 10.5 转移地址在寄存器中的 call 指令10.6 转移地址在内存中的 call 指令检…

LabVIEW高速信号测量与存储

LabVIEW高速信号测量与存储 介绍了LabVIEW开发的高速信号测量与存储系统,解决实验研究中信号捕获的速度和准确性问题。通过高效的数据处理和存储解决方案,本系统为用户提供了一种快速、可靠的信号测量方法。 项目背景 在科学研究和工业应用中&#xf…

session和cookie理解

目录 1、理解无状态 2、Session和Cookie理论 3、使用session存储数据 前言,理解session与cookie对于我们做web测试、接口测试、性能测试都是非常有帮助的。 cookie是一些数据信息,存储在浏览器端。 session是存储于服务器端的特殊对象,服务器…

Java并发基础:CompletableFuture全面解析

内容概要 CompletableFuture类使得并发任务的处理变得简单而高效,通过简洁的API,开发者能轻松创建、组合和链式调用异步操作,无需关心底层线程管理,这不仅提升了程序的响应速度,还优化了资源利用率,让复杂…

【Redis】 如何保证数据不丢失?

目录 1.Redis 持久化 1.1 RDB 持久化 1.2 AOF 持久化 1.3 混合持久化 2.Redis 集群 2.1 主从同步 2.2 哨兵模式 2.3 Redis Cluster 小结 1.Redis 持久化 持久化是指将数据从内存中存储到持久化存储介质中(如硬盘)的过程,以便在程序重…

C++之Easyx——图形库的基本准备工作

什么是Easyx? EasyX Graphics Library 是针对 Visual C 的免费绘图库,支持 VC6.0 ~ VC2022,简单易用,学习成本极低,应用领域广泛。目前已有许多大学将 EasyX 应用在教学当中。 它比Red PandaDev C上的图形库功能要强…

好用的UI自动化测试平台推荐

随着软件行业的不断发展,建立一个完善的自动化测试体系变得至关重要。目前,自动化测试主要涵盖接口自动化测试和UI自动化测试两个主要领域。就目前而言,企业在UI自动化测试方面的覆盖率仍然相对较低。 接口自动化测试可以模拟和执行应用程序…

怎么清理mac系统缓存系统垃圾文件 ?怎么清理mac系统DNS缓存

很多使用苹果电脑的用户都喜欢在同时运行多个软件,不过这样会导致在运行一些大型软件的时候出现不必要的卡顿现象,这时候我们就可以去清理下内存,不过很多人可能并不知道正确的清内存方式,下面就和小编一起来看看吧。 mac系统是一…

虚拟机--pc端和macOS端互通

windows开启虚拟化 要在Windows系统中开启虚拟化,您可以按照以下步骤操作: 准备工作: 确保您的计算机CPU支持虚拟化技术。在BIOS中开启相应的虚拟化支持。 开启虚拟化: 打开控制面板,点击程序或功能项&am…

初识KMP算法

目录 1.KMP算法的介绍 2.next数组 3.总结 1.KMP算法的介绍 首先我们会疑惑,什么是KMP算法?这个算法是用来干什么的? KMP(Knuth-Morris-Pratt)算法是一种用于字符串匹配的经典算法,它的目标是在一个主文本…

Allegro172版本如何用自带功能改变过孔网络属性操作指导

Allegro172版本如何用自带功能改变过孔网络属性操作指导 在用Allegro做PCB设计的时候,时常会需要将过孔的网络进行变更,可以将原来的过孔删除,再重新打一个,这种方法难免会繁琐一些。 当然我们可以借助skill工具来完成更换过孔网络的更改,除此之外,Allegro自带的功能完成…

Excel常用快捷键(持续更新)

引言 excel是我们办公中经常使用的工具,古语言“工欲善其事必先利其器”。excel是一个好的工具,但是工具里面有很多常用的快捷键,若我们熟记这些快捷键,便可以提高我们的工作效率。本文为持续更新,望有助于搬砖。 1、C…

简单的线程池——从单线程到多线程——从零基础到零基础(站长素材)

多进程(Process)-读取到数据,要用cpu来运行大量的次数和时间(多线程)(cpu密集型)——multiprocessing 多线程(Thread)-IO多的,同时运行任务数目不多&#xf…

stm32学习笔记-STLINK使用

stm32学习笔记-STLINK使用 使用ST-LINK调试程序进度表格 使用ST-LINK调试程序 说明 组成 总结 记录使用STLINK进行项目的烧写和调试,旨在高效的进行代码调试学习工具包括笔记本、keil5MDK、stm32f030c8t6电表主机、STLINK V2、导线、电表代码总的来说&#xff0…

Kernel 地图

前言 在 Linux Kernel 中,根据 Makefile 和 Kconfig,可以快速地了解一个小的内核子系统。所以我将这两个文件称之为 Kernel 地图。 Kernel 地图 基本上,Linux 内核中,每一个目录下面都有一个 Makefile 和一个 Kconfig 文件。这…

ubuntu 之 zeitgeist-fts 占用内存

座右铭:怎么简单怎么来,以实现功能为主。 欢迎大家关注公众号与我交流 sudo chmod -x /usr/bin/zeitgeist-daemonsudo chmod -x /usr/bin/zeitgeist-datahublocate zeitgeist-ftssudo chmod -x /usr/lib/x86_64-linux-gnu/zeitgeist-fts # 使用 locate z…