NLP_GPT生成式自回归模型

news2025/1/17 13:49:23

文章目录

  • 介绍
  • 完整代码
  • 小结


介绍

自回归(Autoregressive)是自然语言处理模型的一种训练方法,其核心思想是基于已有的序列(词或字符)来预测下一个元素。在GPT中,这意味着模型会根据给定的上文来生成下一个词,如图所示。
在这里插入图片描述

在GPT模型的训练和推理这两个相互独立的过程中,“自回归”的含义是不同的。

  • 训练过程中的“自回归”:在训练阶段,GPT通过大量文本数据进行学习。模型会接收一个词序列作为输入,然后预测下一个词。损失函数主要用于衡量模型预测与实际词之间的差异。在训练过程中,模型将不断调整其参数,以最小化损失函数。这个过程会持续进行,直到模型在预测任务上达到一定的性能。训练过程中也常常使用教师强制来加快模型的收敛速度。
  • 推理过程中的“自回归”:在推理阶段,我们利用训练好的 GPT 模型来生成文本。首先,我们提供一个初始的种子文本(即提示或指令),然后模型会根据这个种子文本生成下一个词。生成的词将被添加到文本中,继续输入模型,模型会接着生成下一个词,以此类推。这个过程会一直进行,直到生成一定长度的文本或遇到特定的结束符。

在生成文本时,GPT通常会根据词的概率分布来选择下一个词。这可以通过多种策略实现,如贪婪搜索-总是选择概率最高的词,集束搜索-同时考虑多个可能的词序列,采样方法根据词的概率分布随机选择词等。

GPT是生成式自回归模型,生成式自回归模型是生成式模型的一种。生成式模型和判别式模型是两种主要的机器学习模型。

  • 生成式模型(Generative Model):生成式模型不仅关心输入和输出之间的关系,同时也会考虑数据生成的机制。它会对数据的分布进行建模,并试图了解数据是如何生成的。生成式模型能够模拟新的数据实例,比如高斯混合模型、隐马尔可夫模型、朴素贝叶斯分类器等。
  • 判别式模型(Discriminative Model):判别式模型主要关注输入与输出之间的关系,直接学习从输入到输出的映射或者决策边界,不考虑数据的生成过程,比如逻辑回归、支持向量机、神经网络等。

自回归模型(Autoregressive Model)是生成式模型的一种特例,它预测的新目标值是基于前面若干个已生成值的。自回归模型在时间序列分析、语音信号处理、自然语言处理等领域有广泛应用。在序列生成问题中,自回归模型特别重要,比如在机器翻译、文本生成、语音合成等任务中,Transformer的解码器、GPT等模型就是基于自回归原理的。

问题:Transformer和GPT都是神经网络,从定义上应该是判别式模型才对?
Transformer和GPT都是神经网络模型,属于深度学习的范畴。神经网络模型在形式上是判别式模型,因为它们直接学习从输入到输出的映射关系,不考虑数据的生成过程。但是,在处理生成任务,比如文本生成、语音合成等任务时,神经网络模型可以使用自回归的方式进行生成,此时它们的行为更像生成式模型,所以称之为生成式自回归模型是可以的。

用自回归机制来逐词生成翻译结果

继续使用同样的中英翻译数据集,还是使用之前的Transformer模型,这里我们只是加一个用贪婪搜索进行生成式解码的函数,然后在测试过程中调用这个函数重新测试。

代码调整的第一步:定义一个贪婪解码器函数。

# 定义贪婪解码器函数
def greedy_decoder(model, enc_input, start_symbol):
    # 对输入数据进行编码,并获得编码器输出以及自注意力权重
    enc_outputs, enc_self_attns = model.encoder(enc_input)    
    # 初始化解码器输入为全零张量,大小为 (1, 5),数据类型与 enc_input 一致
    dec_input = torch.zeros(1, 5).type_as(enc_input.data)    
    # 设置下一个要解码的符号为开始符号
    next_symbol = start_symbol    
    # 循环 5 次,为解码器输入中的每一个位置填充一个符号
    for i in range(0, 5):
        # 将下一个符号放入解码器输入的当前位置
        dec_input[0][i] = next_symbol        
        # 运行解码器,获得解码器输出、解码器自注意力权重和编码器 - 解码器注意力权重
        dec_output, _, _ = model.decoder(dec_input, enc_input, enc_outputs)        
        # 将解码器输出投影到目标词汇空间
        projected = model.projection(dec_output)        
        # 找到具有最高概率的下一个单词
        prob = projected.squeeze(0).max(dim=-1, keepdim=False)[1]
        next_word = prob.data[i]        
        # 将找到的下一个单词作为新的符号
        next_symbol = next_word.item()        
    # 返回解码器输入,它包含了生成的符号序列
    dec_outputs = dec_input
    return dec_outputs

上述代码定义了一个贪婪解码器函数greedy_decoder。该函数将模型model、编码器输入 enc_input及开始符号start_symbol作为输入。贪婪解码器通过寻找具有最高概率的单词作为下一个生成单词,从而生成一个单词序列。其中的关键部分是解码器会循环 5次,每次为解码器输入中的一个位置填充一个刚刚生成的符号,然后将这个符号和之前生成的符号一起,作为解码器输入序列dec_input输入下一次的解码器调用过程,直至循环结束。

代码调整的第二步:使用贪婪解码器进行测试,生成翻译文本。

# 用贪婪解码器生成翻译文本
enc_inputs, dec_inputs, target_batch = corpus.make_batch(batch_size=1, test_batch=True) 
# 使用贪婪解码器生成解码器输入
greedy_dec_input = greedy_decoder(model, enc_inputs, start_symbol=corpus.tgt_vocab['<sos>'])
# 将解码器输入转换为单词序列
greedy_dec_output_words = [corpus.tgt_idx2word[n.item()] for n in greedy_dec_input.squeeze()]
# 打印编码器输入和贪婪解码器生成的文本
enc_inputs_words = [corpus.src_idx2word[code.item()] for code in enc_inputs[0]]
print(enc_inputs_words, '->', greedy_dec_output_words)

在这里插入图片描述

看到贪婪解码器逐词推演生成的文本,只修改了这么一点点内容,效果就变得这么好了。

完整代码

import numpy as np # 导入 numpy 库
import torch # 导入 torch 库
import torch.nn as nn # 导入 torch.nn 库
d_k = 64 # K(=Q) 维度
d_v = 64 # V 维度
# 定义缩放点积注意力类
class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()        
    def forward(self, Q, K, V, attn_mask):
        #------------------------- 维度信息 --------------------------------        
        # Q K V [batch_size, n_heads, len_q/k/v, dim_q=k/v] (dim_q=dim_k)
        # attn_mask [batch_size, n_heads, len_q, len_k]
        #----------------------------------------------------------------
        # 计算注意力分数(原始权重)[batch_size,n_heads,len_q,len_k]
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) 
        #------------------------- 维度信息 --------------------------------        
        # scores [batch_size, n_heads, len_q, len_k]
        #-----------------------------------------------------------------        
        # 使用注意力掩码,将 attn_mask 中值为 1 的位置的权重替换为极小值
        #------------------------- 维度信息 -------------------------------- 
        # attn_mask [batch_size, n_heads, len_q, len_k], 形状和 scores 相同
        #-----------------------------------------------------------------    
        scores.masked_fill_(attn_mask, -1e9) 
        # 对注意力分数进行 softmax 归一化
        weights = nn.Softmax(dim=-1)(scores) 
        #------------------------- 维度信息 -------------------------------- 
        # weights [batch_size, n_heads, len_q, len_k], 形状和 scores 相同
        #-----------------------------------------------------------------         
        # 计算上下文向量(也就是注意力的输出), 是上下文信息的紧凑表示
        context = torch.matmul(weights, V) 
        #------------------------- 维度信息 -------------------------------- 
        # context [batch_size, n_heads, len_q, dim_v]
        #-----------------------------------------------------------------    
        return context, weights # 返回上下文向量和注意力分数
# 定义多头自注意力类
d_embedding = 512  # Embedding 的维度
n_heads = 8  # Multi-Head Attention 中头的个数
batch_size = 3 # 每一批的数据大小
class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_embedding, d_k * n_heads) # Q的线性变换层
        self.W_K = nn.Linear(d_embedding, d_k * n_heads) # K的线性变换层
        self.W_V = nn.Linear(d_embedding, d_v * n_heads) # V的线性变换层
        self.linear = nn.Linear(n_heads * d_v, d_embedding)
        self.layer_norm = nn.LayerNorm(d_embedding)
    def forward(self, Q, K, V, attn_mask): 
        #------------------------- 维度信息 -------------------------------- 
        # Q K V [batch_size, len_q/k/v, embedding_dim] 
        #-----------------------------------------------------------------        
        residual, batch_size = Q, Q.size(0) # 保留残差连接
        # 将输入进行线性变换和重塑,以便后续处理
        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)        
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)
        #------------------------- 维度信息 -------------------------------- 
        # q_s k_s v_s: [batch_size, n_heads, len_q/k/v, d_q=k/v]
        #----------------------------------------------------------------- 
        # 将注意力掩码复制到多头 attn_mask: [batch_size, n_heads, len_q, len_k]
        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)
        #------------------------- 维度信息 -------------------------------- 
        # attn_mask [batch_size, n_heads, len_q, len_k]
        #----------------------------------------------------------------- 
        # 使用缩放点积注意力计算上下文和注意力权重
        context, weights = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        #------------------------- 维度信息 -------------------------------- 
        # context [batch_size, n_heads, len_q, dim_v]
        # weights [batch_size, n_heads, len_q, len_k]
        #----------------------------------------------------------------- 
        # 通过调整维度将多个头的上下文向量连接在一起
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) 
        #------------------------- 维度信息 -------------------------------- 
        # context [batch_size, len_q, n_heads * dim_v]
        #-----------------------------------------------------------------        
        # 用一个线性层把连接后的多头自注意力结果转换,原始地嵌入维度
        output = self.linear(context) 
        #------------------------- 维度信息 -------------------------------- 
        # output [batch_size, len_q, embedding_dim]
        #-----------------------------------------------------------------        
        # 与输入 (Q) 进行残差链接,并进行层归一化后输出
        output = self.layer_norm(output + residual)
        #------------------------- 维度信息 -------------------------------- 
        # output [batch_size, len_q, embedding_dim]
        #-----------------------------------------------------------------        
        return output, weights # 返回层归一化的输出和注意力权重
# 定义逐位置前馈网络类
class PoswiseFeedForwardNet(nn.Module):
    def __init__(self, d_ff=2048):
        super(PoswiseFeedForwardNet, self).__init__()
        # 定义一维卷积层 1,用于将输入映射到更高维度
        self.conv1 = nn.Conv1d(in_channels=d_embedding, out_channels=d_ff, kernel_size=1)
        # 定义一维卷积层 2,用于将输入映射回原始维度
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_embedding, kernel_size=1)
        # 定义层归一化
        self.layer_norm = nn.LayerNorm(d_embedding)
    def forward(self, inputs): 
        #------------------------- 维度信息 -------------------------------- 
        # inputs [batch_size, len_q, embedding_dim]
        #----------------------------------------------------------------                       
        residual = inputs  # 保留残差连接 
        # 在卷积层 1 后使用 ReLU 激活函数 
        output = nn.ReLU()(self.conv1(inputs.transpose(1, 2))) 
        #------------------------- 维度信息 -------------------------------- 
        # output [batch_size, d_ff, len_q]
        #----------------------------------------------------------------
        # 使用卷积层 2 进行降维 
        output = self.conv2(output).transpose(1, 2) 
        #------------------------- 维度信息 -------------------------------- 
        # output [batch_size, len_q, embedding_dim]
        #----------------------------------------------------------------
        # 与输入进行残差链接,并进行层归一化
        output = self.layer_norm(output + residual) 
        #------------------------- 维度信息 -------------------------------- 
        # output [batch_size, len_q, embedding_dim]
        #----------------------------------------------------------------
        return output # 返回加入残差连接后层归一化的结果
# 生成正弦位置编码表的函数,用于在 Transformer 中引入位置信息
def get_sin_enc_table(n_position, embedding_dim):
    #------------------------- 维度信息 --------------------------------
    # n_position: 输入序列的最大长度
    # embedding_dim: 词嵌入向量的维度
    #-----------------------------------------------------------------    
    # 根据位置和维度信息,初始化正弦位置编码表
    sinusoid_table = np.zeros((n_position, embedding_dim))    
    # 遍历所有位置和维度,计算角度值
    for pos_i in range(n_position):
        for hid_j in range(embedding_dim):
            angle = pos_i / np.power(10000, 2 * (hid_j // 2) / embedding_dim)
            sinusoid_table[pos_i, hid_j] = angle    
    # 计算正弦和余弦值
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i 偶数维
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1 奇数维    
    #------------------------- 维度信息 --------------------------------
    # sinusoid_table 的维度是 [n_position, embedding_dim]
    #----------------------------------------------------------------   
    return torch.FloatTensor(sinusoid_table)  # 返回正弦位置编码表
# 定义填充注意力掩码函数
def get_attn_pad_mask(seq_q, seq_k):
    #------------------------- 维度信息 --------------------------------
    # seq_q 的维度是 [batch_size, len_q]
    # seq_k 的维度是 [batch_size, len_k]
    #-----------------------------------------------------------------
    batch_size, len_q = seq_q.size()
    batch_size, len_k = seq_k.size()
    # 生成布尔类型张量
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)  # <PAD>token 的编码值为 0
    #------------------------- 维度信息 --------------------------------
    # pad_attn_mask 的维度是 [batch_size,1,len_k]
    #-----------------------------------------------------------------
    # 变形为与注意力分数相同形状的张量 
    pad_attn_mask = pad_attn_mask.expand(batch_size, len_q, len_k)
    #------------------------- 维度信息 --------------------------------
    # pad_attn_mask 的维度是 [batch_size,len_q,len_k]
    #-----------------------------------------------------------------
    return pad_attn_mask
# 定义编码器层类
class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()        
        self.enc_self_attn = MultiHeadAttention() # 多头自注意力层        
        self.pos_ffn = PoswiseFeedForwardNet() # 位置前馈神经网络层
    def forward(self, enc_inputs, enc_self_attn_mask):
        #------------------------- 维度信息 --------------------------------
        # enc_inputs 的维度是 [batch_size, seq_len, embedding_dim]
        # enc_self_attn_mask 的维度是 [batch_size, seq_len, seq_len]
        #-----------------------------------------------------------------
        # 将相同的 Q,K,V 输入多头自注意力层 , 返回的 attn_weights 增加了头数  
        enc_outputs, attn_weights = self.enc_self_attn(enc_inputs, enc_inputs,
                                               enc_inputs, enc_self_attn_mask)
        #------------------------- 维度信息 --------------------------------
        # enc_outputs 的维度是 [batch_size, seq_len, embedding_dim] 
        # attn_weights 的维度是 [batch_size, n_heads, seq_len, seq_len]      
        # 将多头自注意力 outputs 输入位置前馈神经网络层
        enc_outputs = self.pos_ffn(enc_outputs) # 维度与 enc_inputs 相同
        #------------------------- 维度信息 --------------------------------
        # enc_outputs 的维度是 [batch_size, seq_len, embedding_dim] 
        #-----------------------------------------------------------------
        return enc_outputs, attn_weights # 返回编码器输出和每层编码器注意力权重
# 定义编码器类
n_layers = 6  # 设置 Encoder 的层数
class Encoder(nn.Module):
    def __init__(self, corpus):
        super(Encoder, self).__init__()        
        self.src_emb = nn.Embedding(len(corpus.src_vocab), d_embedding) # 词嵌入层
        self.pos_emb = nn.Embedding.from_pretrained( \
          get_sin_enc_table(corpus.src_len+1, d_embedding), freeze=True) # 位置嵌入层
        self.layers = nn.ModuleList(EncoderLayer() for _ in range(n_layers))# 编码器层数
    def forward(self, enc_inputs):  
        #------------------------- 维度信息 --------------------------------
        # enc_inputs 的维度是 [batch_size, source_len]
        #-----------------------------------------------------------------
        # 创建一个从 1 到 source_len 的位置索引序列
        pos_indices = torch.arange(1, enc_inputs.size(1) + 1).unsqueeze(0).to(enc_inputs)
        #------------------------- 维度信息 --------------------------------
        # pos_indices 的维度是 [1, source_len]
        #-----------------------------------------------------------------             
        # 对输入进行词嵌入和位置嵌入相加 [batch_size, source_len,embedding_dim]
        enc_outputs = self.src_emb(enc_inputs) + self.pos_emb(pos_indices)
        #------------------------- 维度信息 --------------------------------
        # enc_outputs 的维度是 [batch_size, seq_len, embedding_dim]
        #-----------------------------------------------------------------
        # 生成自注意力掩码
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) 
        #------------------------- 维度信息 --------------------------------
        # enc_self_attn_mask 的维度是 [batch_size, len_q, len_k]        
        #-----------------------------------------------------------------         
        enc_self_attn_weights = [] # 初始化 enc_self_attn_weights
        # 通过编码器层 [batch_size, seq_len, embedding_dim]
        for layer in self.layers: 
            enc_outputs, enc_self_attn_weight = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attn_weights.append(enc_self_attn_weight)
        #------------------------- 维度信息 --------------------------------
        # enc_outputs 的维度是 [batch_size, seq_len, embedding_dim] 维度与 enc_inputs 相同
        # enc_self_attn_weights 是一个列表,每个元素的维度是 [batch_size, n_heads, seq_len, seq_len]          
        #-----------------------------------------------------------------
        return enc_outputs, enc_self_attn_weights # 返回编码器输出和编码器注意力权重
# 生成后续注意力掩码的函数,用于在多头自注意力计算中忽略未来信息
def get_attn_subsequent_mask(seq):
    #------------------------- 维度信息 --------------------------------
    # seq 的维度是 [batch_size, seq_len(Q)=seq_len(K)]
    #-----------------------------------------------------------------
    # 获取输入序列的形状
    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]  
    #------------------------- 维度信息 --------------------------------
    # attn_shape 是一个一维张量 [batch_size, seq_len(Q), seq_len(K)]
    #-----------------------------------------------------------------
    # 使用 numpy 创建一个上三角矩阵(triu = triangle upper)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1)
    #------------------------- 维度信息 --------------------------------
    # subsequent_mask 的维度是 [batch_size, seq_len(Q), seq_len(K)]
    #-----------------------------------------------------------------
    # 将 numpy 数组转换为 PyTorch 张量,并将数据类型设置为 byte(布尔值)
    subsequent_mask = torch.from_numpy(subsequent_mask).byte()
    #------------------------- 维度信息 --------------------------------
    # 返回的 subsequent_mask 的维度是 [batch_size, seq_len(Q), seq_len(K)]
    #-----------------------------------------------------------------
    return subsequent_mask # 返回后续位置的注意力掩码
# 定义解码器层类
class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()        
        self.dec_self_attn = MultiHeadAttention() # 多头自注意力层       
        self.dec_enc_attn = MultiHeadAttention()  # 多头自注意力层,连接编码器和解码器        
        self.pos_ffn = PoswiseFeedForwardNet() # 位置前馈神经网络层
    def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        #------------------------- 维度信息 --------------------------------
        # dec_inputs 的维度是 [batch_size, target_len, embedding_dim]
        # enc_outputs 的维度是 [batch_size, source_len, embedding_dim]
        # dec_self_attn_mask 的维度是 [batch_size, target_len, target_len]
        # dec_enc_attn_mask 的维度是 [batch_size, target_len, source_len]
        #-----------------------------------------------------------------      
        # 将相同的 Q,K,V 输入多头自注意力层
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, 
                                                        dec_inputs, dec_self_attn_mask)
        #------------------------- 维度信息 --------------------------------
        # dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
        # dec_self_attn 的维度是 [batch_size, n_heads, target_len, target_len]
        #-----------------------------------------------------------------        
        # 将解码器输出和编码器输出输入多头自注意力层
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, 
                                                      enc_outputs, dec_enc_attn_mask)
        #------------------------- 维度信息 --------------------------------
        # dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
        # dec_enc_attn 的维度是 [batch_size, n_heads, target_len, source_len]
        #-----------------------------------------------------------------          
        # 输入位置前馈神经网络层
        dec_outputs = self.pos_ffn(dec_outputs)
        #------------------------- 维度信息 --------------------------------
        # dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
        # dec_self_attn 的维度是 [batch_size, n_heads, target_len, target_len]
        # dec_enc_attn 的维度是 [batch_size, n_heads, target_len, source_len]   
        #-----------------------------------------------------------------
        # 返回解码器层输出,每层的自注意力和解 - 编码器注意力权重
        return dec_outputs, dec_self_attn, dec_enc_attn
#  定义解码器类
n_layers = 6  # 设置 Decoder 的层数
class Decoder(nn.Module):
    def __init__(self, corpus):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(len(corpus.tgt_vocab), d_embedding) # 词嵌入层
        self.pos_emb = nn.Embedding.from_pretrained( \
           get_sin_enc_table(corpus.tgt_len+1, d_embedding), freeze=True) # 位置嵌入层        
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)]) # 叠加多层
    def forward(self, dec_inputs, enc_inputs, enc_outputs): 
        #------------------------- 维度信息 --------------------------------
        # dec_inputs 的维度是 [batch_size, target_len]
        # enc_inputs 的维度是 [batch_size, source_len]
        # enc_outputs 的维度是 [batch_size, source_len, embedding_dim]
        #-----------------------------------------------------------------   
        # 创建一个从 1 到 source_len 的位置索引序列
        pos_indices = torch.arange(1, dec_inputs.size(1) + 1).unsqueeze(0).to(dec_inputs)
        #------------------------- 维度信息 --------------------------------
        # pos_indices 的维度是 [1, target_len]
        #-----------------------------------------------------------------              
        # 对输入进行词嵌入和位置嵌入相加
        dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(pos_indices)
        #------------------------- 维度信息 --------------------------------
        # dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
         #-----------------------------------------------------------------        
        # 生成解码器自注意力掩码和解码器 - 编码器注意力掩码
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs) # 填充位掩码
        dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs) # 后续位掩码
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask \
                                       + dec_self_attn_subsequent_mask), 0) 
        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # 解码器 - 编码器掩码
        #------------------------- 维度信息 --------------------------------        
        # dec_self_attn_pad_mask 的维度是 [batch_size, target_len, target_len]
        # dec_self_attn_subsequent_mask 的维度是 [batch_size, target_len, target_len]
        # dec_self_attn_mask 的维度是 [batch_size, target_len, target_len]
        # dec_enc_attn_mask 的维度是 [batch_size, target_len, source_len]
         #-----------------------------------------------------------------       
        dec_self_attns, dec_enc_attns = [], [] # 初始化 dec_self_attns, dec_enc_attns
        # 通过解码器层 [batch_size, seq_len, embedding_dim]
        for layer in self.layers:
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, 
                                               dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)
        #------------------------- 维度信息 --------------------------------
        # dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
        # dec_self_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, target_len, target_len]
        # dec_enc_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, target_len, source_len]
        #----------------------------------------------------------------- 
        # 返回解码器输出,解码器自注意力和解码器 - 编码器注意力权重       
        return dec_outputs, dec_self_attns, dec_enc_attns
# 定义 Transformer 模型
class Transformer(nn.Module):
    def __init__(self, corpus):
        super(Transformer, self).__init__()        
        self.encoder = Encoder(corpus) # 初始化编码器实例        
        self.decoder = Decoder(corpus) # 初始化解码器实例
        # 定义线性投影层,将解码器输出转换为目标词汇表大小的概率分布
        self.projection = nn.Linear(d_embedding, len(corpus.tgt_vocab), bias=False)
    def forward(self, enc_inputs, dec_inputs):
        #------------------------- 维度信息 --------------------------------
        # enc_inputs 的维度是 [batch_size, source_seq_len]
        # dec_inputs 的维度是 [batch_size, target_seq_len]
        #-----------------------------------------------------------------        
        # 将输入传递给编码器,并获取编码器输出和自注意力权重        
        enc_outputs, enc_self_attns = self.encoder(enc_inputs)
        #------------------------- 维度信息 --------------------------------
        # enc_outputs 的维度是 [batch_size, source_len, embedding_dim]
        # enc_self_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, src_seq_len, src_seq_len]        
        #-----------------------------------------------------------------          
        # 将编码器输出、解码器输入和编码器输入传递给解码器
        # 获取解码器输出、解码器自注意力权重和编码器 - 解码器注意力权重     
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
        #------------------------- 维度信息 --------------------------------
        # dec_outputs 的维度是 [batch_size, target_len, embedding_dim]
        # dec_self_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, tgt_seq_len, src_seq_len]
        # dec_enc_attns 是一个列表,每个元素的维度是 [batch_size, n_heads, tgt_seq_len, src_seq_len]   
        #-----------------------------------------------------------------                
        # 将解码器输出传递给投影层,生成目标词汇表大小的概率分布
        dec_logits = self.projection(dec_outputs)  
        #------------------------- 维度信息 --------------------------------
        # dec_logits 的维度是 [batch_size, tgt_seq_len, tgt_vocab_size]
        #-----------------------------------------------------------------
        # 返回逻辑值 ( 原始预测结果 ), 编码器自注意力权重,解码器自注意力权重,解 - 编码器注意力权重
        return dec_logits, enc_self_attns, dec_self_attns, dec_enc_attns
sentences = [
    ['哒哥 喜欢 爬山', 'DaGe likes hiking'],
    ['我 爱 学习 人工智能', 'I love studying AI'],
    ['深度学习 改变 世界', ' DL changed the world'],
    ['自然语言处理 很 强大', 'NLP is powerful'],
    ['神经网络 非常 复杂', 'Neural-networks are complex'] ]
from collections import Counter # 导入 Counter 类
# 定义 TranslationCorpus 类
class TranslationCorpus:
    def __init__(self, sentences):
        self.sentences = sentences
        # 计算源语言和目标语言的最大句子长度,并分别加 1 和 2 以容纳填充符和特殊符号
        self.src_len = max(len(sentence[0].split()) for sentence in sentences) + 1
        self.tgt_len = max(len(sentence[1].split()) for sentence in sentences) + 2
        # 创建源语言和目标语言的词汇表
        self.src_vocab, self.tgt_vocab = self.create_vocabularies()
        # 创建索引到单词的映射
        self.src_idx2word = {v: k for k, v in self.src_vocab.items()}
        self.tgt_idx2word = {v: k for k, v in self.tgt_vocab.items()}
    # 定义创建词汇表的函数
    def create_vocabularies(self):
        # 统计源语言和目标语言的单词频率
        src_counter = Counter(word for sentence in self.sentences for word in sentence[0].split())
        tgt_counter = Counter(word for sentence in self.sentences for word in sentence[1].split())        
        # 创建源语言和目标语言的词汇表,并为每个单词分配一个唯一的索引
        src_vocab = {'<pad>': 0, **{word: i+1 for i, word in enumerate(src_counter)}}
        tgt_vocab = {'<pad>': 0, '<sos>': 1, '<eos>': 2, 
                     **{word: i+3 for i, word in enumerate(tgt_counter)}}        
        return src_vocab, tgt_vocab
    # 定义创建批次数据的函数
    def make_batch(self, batch_size, test_batch=False):
        input_batch, output_batch, target_batch = [], [], []
        # 随机选择句子索引
        sentence_indices = torch.randperm(len(self.sentences))[:batch_size]
        for index in sentence_indices:
            src_sentence, tgt_sentence = self.sentences[index]
            # 将源语言和目标语言的句子转换为索引序列
            src_seq = [self.src_vocab[word] for word in src_sentence.split()]
            tgt_seq = [self.tgt_vocab['<sos>']] + [self.tgt_vocab[word] \
                         for word in tgt_sentence.split()] + [self.tgt_vocab['<eos>']]            
            # 对源语言和目标语言的序列进行填充
            src_seq += [self.src_vocab['<pad>']] * (self.src_len - len(src_seq))
            tgt_seq += [self.tgt_vocab['<pad>']] * (self.tgt_len - len(tgt_seq))            
            # 将处理好的序列添加到批次中
            input_batch.append(src_seq)
            output_batch.append([self.tgt_vocab['<sos>']] + ([self.tgt_vocab['<pad>']] * \
                                    (self.tgt_len - 2)) if test_batch else tgt_seq[:-1])
            target_batch.append(tgt_seq[1:])        
          # 将批次转换为 LongTensor 类型
        input_batch = torch.LongTensor(input_batch)
        output_batch = torch.LongTensor(output_batch)
        target_batch = torch.LongTensor(target_batch)            
        return input_batch, output_batch, target_batch
# 创建语料库类实例
corpus = TranslationCorpus(sentences)
import torch # 导入 torch
import torch.optim as optim # 导入优化器
model = Transformer(corpus) # 创建模型实例
criterion = nn.CrossEntropyLoss() # 损失函数
optimizer = optim.Adam(model.parameters(), lr=0.0001) # 优化器
epochs = 5 # 训练轮次
for epoch in range(epochs): # 训练 100 轮
    optimizer.zero_grad() # 梯度清零
    enc_inputs, dec_inputs, target_batch = corpus.make_batch(batch_size) # 创建训练数据        
    outputs, _, _, _ = model(enc_inputs, dec_inputs) # 获取模型输出 
    loss = criterion(outputs.view(-1, len(corpus.tgt_vocab)), target_batch.view(-1)) # 计算损失
    if (epoch + 1) % 1 == 0: # 打印损失
        print(f"Epoch: {epoch + 1:04d} cost = {loss:.6f}")
    loss.backward()# 反向传播        
    optimizer.step()# 更新参数

在这里插入图片描述

# 定义贪婪解码器函数
def greedy_decoder(model, enc_input, start_symbol):
    # 对输入数据进行编码,并获得编码器输出以及自注意力权重
    enc_outputs, enc_self_attns = model.encoder(enc_input)    
    # 初始化解码器输入为全零张量,大小为 (1, 5),数据类型与 enc_input 一致
    dec_input = torch.zeros(1, 5).type_as(enc_input.data)    
    # 设置下一个要解码的符号为开始符号
    next_symbol = start_symbol    
    # 循环 5 次,为解码器输入中的每一个位置填充一个符号
    for i in range(0, 5):
        # 将下一个符号放入解码器输入的当前位置
        dec_input[0][i] = next_symbol        
        # 运行解码器,获得解码器输出、解码器自注意力权重和编码器 - 解码器注意力权重
        dec_output, _, _ = model.decoder(dec_input, enc_input, enc_outputs)        
        # 将解码器输出投影到目标词汇空间
        projected = model.projection(dec_output)        
        # 找到具有最高概率的下一个单词
        prob = projected.squeeze(0).max(dim=-1, keepdim=False)[1]
        next_word = prob.data[i]        
        # 将找到的下一个单词作为新的符号
        next_symbol = next_word.item()        
    # 返回解码器输入,它包含了生成的符号序列
    dec_outputs = dec_input
    return dec_outputs
# 用贪婪解码器生成翻译文本
enc_inputs, dec_inputs, target_batch = corpus.make_batch(batch_size=1, test_batch=True) 
# 使用贪婪解码器生成解码器输入
greedy_dec_input = greedy_decoder(model, enc_inputs, start_symbol=corpus.tgt_vocab['<sos>'])
# 将解码器输入转换为单词序列
greedy_dec_output_words = [corpus.tgt_idx2word[n.item()] for n in greedy_dec_input.squeeze()]
# 打印编码器输入和贪婪解码器生成的文本
enc_inputs_words = [corpus.src_idx2word[code.item()] for code in enc_inputs[0]]
print(enc_inputs_words, '->', greedy_dec_output_words)

在这里插入图片描述

小结

GPT 模型基于 Transformer架构,使用单向(从左到右)的Transformer 解码器进行预训练。预训练过程在大量无标签文本上进行,目标是通过给定的上下文预测下一个单词。

GPT模型中,采用了生成式自回归这种基于已有序列来预测下一个元素的方法。在训练阶段,模型通过大量文本数据学习生成下一个词的能力;在预测阶段,模型利用训练好的参数来生成一段连贯的文本。


学习的参考资料:
(1)书籍
利用Python进行数据分析
西瓜书
百面机器学习
机器学习实战
阿里云天池大赛赛题解析(机器学习篇)
白话机器学习中的数学
零基础学机器学习
图解机器学习算法

动手学深度学习(pytorch)

(2)机构
光环大数据
开课吧
极客时间
七月在线
深度之眼
贪心学院
拉勾教育
博学谷
慕课网
海贼宝藏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1455780.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据分析 — 动画图 pyecharts

目录 一、概念二、安装和导入三、绘图逻辑四、绘图1、柱状图2、折线图3、散点图4、饼图5、南丁格尔图6、Geo() 地理坐标第7、Map() 绘制区域8、词云图9、层叠图10、3D 图11、仪表板 一、概念 Pyecharts 是一个基于 Echarts 的 Python 可视化库&#xff0c;它通过 Python 生成 …

猪圈Pigsty-PG私有RDS集群搭建教程

博客 https://songxwn.com/Pigsty-PG-RDS/ 简介 Pigsty 是一个更好的本地自建且开源 RDS for PostgreSQL 替代&#xff0c;具有以下特点&#xff1a; 开箱即用的 PostgreSQL 发行版&#xff0c;深度整合地理、时序、分布式、图、向量、分词、AI等 150 余个扩展插件&#xff…

OpenAI Sora —— 文生视频为何如此逼真?AI算法架构解析

OpenAI于2024年2月16日发布了名为Sora的文生视频模型。Sora是一个革命性的视频生成模型&#xff0c;可以根据用户输入的简单文本脚本自动生成与好莱坞级别画面相媲美的视频内容&#xff0c;其生成的视频不仅仅是对已有素材的拼接或剪辑合成&#xff0c;而是从像素级别全新“绘制…

【Jvm】性能调优(上)线上问题排查工具汇总

文章目录 一.互联网概念1.产品闭环和业务闭环2.软件设计中的上游和下游3.JDK运行时常量池 二.CPU相关概念1.查询CPU信息2.CPU利用率&#xff08;CPU utilization&#xff09;和 CPU负载&#xff08;CPU load&#xff09;2.1.如何理解CPU负载2.2.top命令查看CPU负载均值2.3.CPU负…

动态头部:统一目标检测头部与注意力

论文地址:https://arxiv.org/pdf/2106.08322.pdf ai阅读论文_论文速读_论文阅读软件-网易有道速读 创新点是什么? 这篇文档的创新点是提出了一种统一的方法&#xff0c;将对象检测头和注意力机制结合起来。作者在文中提出了一种称为Dynamic Head的方法&#xff0c;通过引入…

Android 15 第一个开发者预览版

点击查看&#xff1a;first-developer-preview-android15 点击查看&#xff1a;Get Android 15 2024年2月16日,谷歌发布 Android 15 第一个开发者预览版 翻译 由工程副总裁戴夫伯克发布 今天&#xff0c;我们发布了Android 15的首个开发者预览版&#xff0c;这样我们的开发者就…

[技术杂谈]Chat With RTX 介绍

英伟达&#xff08;Nvidia&#xff09;已于近日发布了名为“Chat with RTX”的Demo版个性化AI聊天机器人&#xff0c;并在其海外官网渠道中提供了下载链接。 据了解&#xff0c;这是一款适用于Windows平台的聊天机器人&#xff0c;由TensorRT-LLM提供支持&#xff0c;完全在本地…

机器人革命:从斯坦福的通用操作接口到OpenAI的Sora,塑造未来的合成学习

引言 在机器人成为平凡工匠和前沿先驱的时代&#xff0c;我们正站在新黎明的边缘。本文将探讨斯坦福大学的通用操作接口&#xff08;UMI&#xff09;及其与OpenAI的Sora如何共同推进机器人技术&#xff0c;开创未来学习的新纪元。 正文 斯坦福的通用操作接口&#xff08;UMI…

电脑文件大爆炸,快用知识管理 | 咨询案例

在刚刚过去的春节假期&#xff0c;意料之外地完成了一次关于个人知识管理实践的咨询。为此&#xff0c;要特别感谢李博和双红老师的引介&#xff0c;使我有机会在帮助他人实践落地个人知识管理系统的同时&#xff0c;丰富了自己的经验积累和案例库。话不多说&#xff0c;来做个…

MySQL-锁(LOCK)

文章目录 1. 锁是什么&#xff1f;2. 全局锁2.1 相关语法2.2 特点 3. 表级锁3.1 表锁3.1.1 共享读锁&#xff08;S&#xff09;3.1.2 排它写锁&#xff08;X&#xff09; 3.2 元数据锁&#xff08;MDL&#xff09;3.2 意向锁&#xff08;IS、IX&#xff09; 4. 行级锁4.1 行锁 …

『随处指挥』:用这款APP,世界听你的!

在这个科技日新月异的时代&#xff0c;我们的生活被各种手机软件所包围。几乎每个人都有一个甚至多个手机&#xff0c;你是否也有遇到过需要远程操作自己某一台手机的场景呢&#xff1f;今天&#xff0c;我要向大家推荐一款神奇的手机远程操作神器&#xff0c;让你可以随时随地…

VTK使用指南:介绍

1、什么是可视化&#xff1f; 术语 不同的术语用于描述可视化。科学可视化是计算机科学领域的正式名称&#xff0c;包括用户界面、数据表示和处理算法、视觉表示和其他感官表示&#xff0c;如声音或触摸。术语数据可视化是用于描述可视化的另一个短语。数据可视化通常被解释为…

Apache Apisix网关系统历史漏洞复现分析

文章目录 前言CVE-2020-13945默认api令牌CVE-2021-45232未授权接口2.1 默认账户密码导致RCE2.2 未授权访问api接口RCE CVE-2022-24112 地址限制绕过CVE-2022-29266 JWT令牌伪造4.1 漏洞源码简析与修复4.2 漏洞环境搭建与复现 总结 前言 Apache APISIX 是一个动态、实时、高性能…

探索Linux系统中HTTP隧道技术的原理与实践

在Linux的世界里&#xff0c;HTTP隧道技术就像是一个神秘的魔法师&#xff0c;它能让你的网络请求穿越重重障碍&#xff0c;安全地到达目的地。今天&#xff0c;我们就来一起探索这个魔法师的奥秘&#xff0c;看看它是如何在Linux系统中施展魔法的。 首先&#xff0c;我们要明…

PFH特征描述符、对应关系可视化以及ICP配准

一、PFH特征描述符可视化 C #include <pcl/point_types.h> #include <pcl/point_cloud.h> #include <pcl/search/kdtree.h> #include <pcl/io/pcd_io.h> #include <pcl/features/normal_3d_omp.h>//使用OMP需要添加的头文件 #include <boos…

PyCharm - Project Interpreter (项目解释器)

PyCharm - Project Interpreter [项目解释器] References File -> Settings… -> Project: -> Project Interpreter References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

深入探讨Lambda表达式转换为委托类型的编译过程

了解了&#xff0c;如果要深入探讨Lambda表达式转换为委托类型的编译过程&#xff0c;我们需要关注C#编译器如何处理这个转换。这个过程涉及到编译时的类型推断、匿名方法的创建&#xff0c;以及生成对应的委托实例。我们来更详细地分析这个过程&#xff1a; 编译阶段 1. 解…

21. Merge Two Sorted Lists(合并两个有序链表)

问题描述 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 问题分析 我们只需要使用两个指针分别从两个链表的头部向后遍历整个链表&#xff0c;每一个次都让量个元素比较大小&#xff0c;小的元素并入的新的链表&#xf…

MySQL(1/3)

基本命令行操作 命令行连接 mysql -uroot -p 回车&#xff0c;然后在下一行输入密码&#xff0c;或者直接在p后写密码 修改密码 updata mysql.user set authentication_stringpassword(原密码) where userroot and Host localhost; 刷新权限 flush privileges; 查看所有数据库…

数据库索引面试的相关问题

查看索引的执行计划 索引失效的情况 1、索引列上做了计算&#xff0c;函数&#xff0c;类型转换等操作。索引失效是因为查询过程需要扫描整个索引并回表。代价高于直接全表扫描。 Like匹配使用了前缀匹配符“%abc” 字符串不加引号导致类型转换。 原因&#xff1a; 常见索…