Open CASCADE学习|曲线向曲面投影

news2025/1/20 16:20:45

在三维空间中,将曲线向曲面投影通常涉及复杂的几何计算。这个过程可以通过多种方法实现,但最常见的是使用数学和几何库,如OpenCASCADE,来处理这些计算。

在OpenCASCADE中,投影曲线到曲面通常涉及以下步骤:

定义曲线(Curve)和曲面(Surface)。

使用适当的算法或类(如BRepProj_Projection)来执行投影。

获取投影后的曲线。

下面是一个简化的例子,展示了如何使用OpenCASCADE的API来将一条曲线投影到一个曲面上:

#include <Geom_BezierCurve.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <TopoDS_Edge.hxx>
#include <BRep_Tool.hxx>
#include <BRepLib.hxx>
#include <TopoDS_Face.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>
#include <BRepBuilderAPI_Transform.hxx>
#include <gp_Ax3.hxx> 
#include <gp_Cylinder.hxx> 
#include <Geom_CylindricalSurface.hxx>
#include <BRepProj_Projection.hxx>
​
#include"Viewer.h"
​
int main(int argc, char* argv[])
{
    //Non Rational B-Spline
​
    gp_Pnt points1[8] = {
    gp_Pnt(0.0,-100.0,0.0),
    gp_Pnt(10.0,10.0,0.0),
    gp_Pnt(30.0,-100.0,0.0),
    gp_Pnt(100.0,0.0,0.0),
    gp_Pnt(150.0,50.0,0.0),
    gp_Pnt(200.0,0.0,0.0),
    gp_Pnt(400.0,200.0,0.0),
    gp_Pnt(450.0,0.0,0.0)
    };
​
    NCollection_Array1<gp_Pnt> points(points1[0], 1, 8);//Control points
    Standard_Real realsWeight[8] = { 1.0,1.0,1.0,1.0,1.0,1.0,10.0,1.0 };
    NCollection_Array1<Standard_Real> weight(realsWeight[0], 1, 8);//权系数,倒数第二个点的权系数是其他的10倍。
    Geom_BezierCurve bezier(points); //Non-Rational
​
    Handle(Geom_BezierCurve) bezier1 = &bezier;
    TopoDS_Edge E = BRepBuilderAPI_MakeEdge(bezier1);
​
    Handle(Geom_CylindricalSurface) aCylinder = new Geom_CylindricalSurface(gp::YOZ(), 200);
    TopoDS_Shape Cylinder = BRepBuilderAPI_MakeFace(aCylinder->Cylinder(), 0, 2*M_PI, -200, 500);
​
    BRepProj_Projection prj(E, Cylinder, gp_Dir(0.0, 0.0, 1.0));
    //prj.Current();
    Viewer vout(50, 50, 500, 500);
    vout << E;
    vout << Cylinder;
    vout << prj.Current();
    vout.StartMessageLoop();
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1455170.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue项目启动过程全记录(node.js运行环境搭建)

一、安装node.js并配置环境变量 1、安装node.js 从Node.js官网下载安装包并安装。然后在安装后的目录&#xff08;如果是下载的压缩文件&#xff0c;则是解压缩的目录&#xff09;下新建node_global和node_cache这两个文件夹。 node_global&#xff1a;npm全局安装位置 node_…

Python 字符串格式化输出

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站零基础入门的AI学习网站~。 前言 字符串格式化是编程中一个常见的需求&#xff0c;它可以们将不同类型的数据&#xff08;如数字、文本、日…

【ansible】认识ansible,了解常用的模块

目录 一、ansible是什么&#xff1f; 二、ansible的特点&#xff1f; 三、ansible与其他运维工具的对比 四、ansible的环境部署 第一步&#xff1a;配置主机清单 第二步&#xff1a;完成密钥对免密登录 五、ansible基于命令行完成常用的模块学习 模块1&#xff1a;comma…

Shiro反弹shell和权限绕过含工具包

★★免责声明★★ 文章中涉及的程序(方法)可能带有攻击性&#xff0c;仅供安全研究与学习之用&#xff0c;读者将信息做其他用途&#xff0c;由Ta承担全部法律及连带责任&#xff0c;文章作者不承担任何法律及连带责任。 1、前言 反序列化漏洞原理和Shiro反序列化漏洞原理请参…

AI绘画图生图怎么用?

AI绘画图生图是指利用人工智能技术&#xff0c;将一张已有的图片转化为另一张具有艺术风格的新图片的过程。这种技术可以应用于多个领域&#xff0c;如室内设计等。 在使用AI绘画图生图功能时&#xff0c;用户需要选择一张参考图片&#xff0c;然后设置生成图片的风格、尺寸、数…

svg之全局组件,配合雪碧图解决vue2的svg优化问题

这里是vue2中的svg的完整解决方案的另一篇。 <template><svg :class"svgClass"><use :xlink:href"#${name}"></use></svg> </template><script>export default {name: icon,props: {name: {type: String,requi…

Bonjour Print Services

Bonjour Print Services &#xff08;apple mobile&#xff09; https://download.csdn.net/download/spencer_tseng/88845785

C++ 离散化 算法 (详解)+ 例题

1、性质 把无限空间中有限的个体映射到有限的空间中去&#xff0c;以此提高算法的空间效率。通俗的说&#xff0c;离散化是在不改变数据相对大小的条件下&#xff0c;对数据进行相应的压缩。 适用范围&#xff1a;数的跨度很大&#xff0c;用的数很稀疏 例如&#xff1a;值域…

Java实现Dfs算法(基本讲解)

目录 一、Dfs算法的概念 二、Dfs算法的设计步骤 三、Dfs算法模板 四、Dfs算法经典例题 &#xff08;1&#xff09;全排列 &#xff08;2&#xff09;N皇后 一、Dfs算法的概念 Depth First Search 即 DFS&#xff0c;意为深度优先搜索&#xff0c;是所有的搜索手段之一。它…

[Flink03] Flink安装

本文介绍Flink的安装步骤&#xff0c;主要是Flink的独立部署模式&#xff0c;它不依赖其他平台。文中内容分为4块&#xff1a;前置准备、Flink本地模式搭建、Flink Standalone搭建、Flink Standalong HA搭建。 演示使用的Flink版本是1.15.4&#xff0c;官方文档地址&#xff1…

Shellcode免杀对抗(C/C++)

Shellcode C/C免杀&#xff0c;绕过360安全卫士、火绒安全、Defender C/C基于cs/msf的上线 首先是测试一下shellcode上线&#xff0c;主要是俩种方法 测试环境 攻击机&#xff1a;kali2023 靶机&#xff1a;win10 msf方法 首先是启动msf msfconsole 然后msf生成一个sh…

每日一题——LeetCode1460.通过翻转子数组使两个数组相等

方法一 哈希Map 用两个Map集合分别统计target和arr里出现的元素和出现的次数&#xff0c;在比较两个Map集合看是否出现的元素和次数都相同 var canBeEqual function(target, arr) {let map1 new Map();let map2 new Map();for (let item of target) {map1.set(item, (map1…

2.18号c++

1.菱形继承 1.1 概念 菱形继承又称为钻石继承&#xff0c;是由公共基类派生出多个中间子类&#xff0c;又由多个中间子类共同派生出汇聚子类。汇聚子类会得到多份中间子类从公共基类继承下来的数据成员&#xff0c;会造成空间浪费&#xff0c;没有必要。 问题&#xff1a; …

洛夫克拉夫特“克苏鲁神话”艺术风格探索(二)

三、多元的叙事风格 洛夫克拉夫特的克苏鲁神话作为当时独特的文学创造&#xff0c;有独特的叙事特征[8]。 一是侦探小说不稳定的叙事。最有名气的早期侦探小说是爱伦坡的《莫格街凶杀案》&#xff0c;并产生了“疑案”的经典设定&#xff0c;两次世界大战期间的侦探小说批评认…

【超级干货】ArcGIS_空间连接_工具详解

帮助里对空间连接的解释&#xff1a; 根据空间关系将一个要素的属性连接到另一个要素。 目标要素和来自连接要素的被连接属性写入到输出要素类。 如上图所示&#xff0c;关键在于空间关系&#xff0c;只有当两个要素存在空间关系的时候&#xff0c;空间连接才有用武之地。 一…

【.NET Core】深入理解async 和 await 理解

【.NET Core】深入理解async 和 await 理解 文章目录 【.NET Core】深入理解async 和 await 理解一、概述二、async异步执行机制理解三、async与await应用3.1 async与await简单应用3.2 带有返回值async与await应用 四、async和await中常见问题总结4.1 当方法用async标识时&…

C++初阶(十三) 模板

一、非类型模板参数 模板参数分类类型形参与非类型形参。类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之类的参数类型名称。非类型形参&#xff0c;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中可将该参数当成常量…

mysql 2-18

加密与解密函数 其他函数 聚合函数 三者效率 GROUP BY HAVING WHERE和HAVING的区别 子查询 单行子查询和多行子查询 单行比较操作符 多行比较操作符 把平均工资生成的结果当成一个新表 相关子查询 EXISTS 一条数据的存储过程 标识符命名规则 创建数据库 MYSQL的数据类型 创建表…

人工智能专题:2024亚太地区生成式人工智能应用与监管报告

今天分享的是人工智能系列深度研究报告&#xff1a;《人工智能专题&#xff1a;2024亚太地区生成式人工智能应用与监管报告》。 &#xff08;报告出品方&#xff1a;德勤&#xff09; 报告共计&#xff1a;20页 来源&#xff1a;人工智能学派 知识更新&#xff1a;了解传统…

按键控制LED和光敏传感器控制蜂鸣器

按键控制LED 把两个按键分别接在PB11、PB1上面&#xff0c;两个LED接在PA1和PA2上面 main.c#include "stm32f10x.h" // Device header #include "Delay.h" #include "LED.h" #include "Key.h"uint8_t keynum; //全局…