[计算机网络]深度学习传输层TCP协议

news2025/1/20 15:10:46

💓 博客主页:从零开始的-CodeNinja之路

⏩ 收录专栏:深度学习传输层TCP协议
🎉欢迎大家点赞👍评论📝收藏⭐文章

[计算机网络]深度学习传输层TCP协议

  • 前提概括
    • 一: TCP协议段格式
    • 二:确认应答
    • 三:超时重传
    • 四:连接管理
    • 五:流量控制
    • 六:拥塞控制
    • 七:滑动窗口
    • 八:延迟应答
    • 九:捎带应答
  • TCP小结

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

前提概括

TCP全称为"传输控制协议(Transmission Control Protocol"),要对数据的传输进行⼀个详细的控制;
端口号(Port):标识了⼀个主机上进行通信的不同的应用程序;

在这里插入图片描述
端口号范围划分

  • 0-1023:知名端口号,HTTP,FTP,SSH等这些广为使用的应用层协议,他们的端口号都是固定的.

  • 1024-65535:操作系统动态分配的端口号.客户端程序的端口号,就是由操作系统从这个范围分配 的.

一: TCP协议段格式

在这里插入图片描述
源/目的端⼝号:表示数据是从哪个进程来,到哪个进程去;

  • 32位序号/32位确认号:意思是告诉发送者,我已经收到了哪些数据;

  • 4位TCP报头长度:表示该TCP头部有多少个32位bit(有多少个4字节);所以TCP头部最大长度是15* 4=60

  • 6位标志位:

  1. URG:紧急指针是否有效

  2. ACK:确认号是否有效

  3. PSH:提⽰接收端应⽤程序⽴刻从TCP缓冲区把数据读⾛

  4. RST:对⽅要求重新建⽴连接;我们把携带RST标识的称为复位报⽂段

  5. SYN:请求建⽴连接;我们把携带SYN标识的称为同步报⽂段

  6. FIN:通知对⽅,本端要关闭了,我们称携带FIN标识的为结束报⽂段

  • 16位窗口大小:一次传输数据的容量大小
  • 16位校验和:发送端填充,CRC校验.接收端校验不通过,则认为数据有问题.此处的检验和不光包含TCP首部,也包含TCP数据部分.
  • 16位紧急指针:标识哪部分数据是紧急数据;

二:确认应答

在这里插入图片描述

TCP将每个字节的数据都进行了编号.即为序列号.
在这里插入图片描述

每⼀个ACK都带有对应的确认序列号,意思是告诉发送者,我已经收到了哪些数据;下⼀次你从哪里开始
发.

三:超时重传

在这里插入图片描述

  • 主机A发送数据给B之后,可能因为网络拥堵等原因,数据无法到达主机B;
  • 如果主机A在⼀个特定时间间隔内没有收到B发来的确认应答,就会进行重发;

但是,主机A未收到B发来的确认应答,也可能是因为ACK丢失了;
在这里插入图片描述
因此主机B会收到很多重复数据.那么TCP协议需要能够识别出那些包是重复的包,并且把重复的丢弃掉.
这时候我们可以利用前⾯提到的序列号,就可以很容易做到去重的效果.

四:连接管理

在正常情况下,TCP要经过三次握手建立连接,四次挥手断开连接
在这里插入图片描述
建力连接的意义:

  1. 确认当前通信路径是否畅通.
  2. 协商参数,通信双方共同确认⼀些通信中的必备参数数值.
  3. 验证通信双方的发送和接收能力是否正常

五:流量控制

接收端处理数据的速度是有限的.如果发送端发的太快,导致接收端的缓冲区被打满,这个时候如果发送
端继续发送,就会造成丢包,继而引起丢包重传等等⼀系列连锁反应.

  • 因此TCP支持根据接收端的处理能力,来决定发送端的发送速度.这个机制就叫做流量控制(Flow Control);
  • 接收端将自己可以接收的缓冲区大小放⼊TCP首部中的"窗口大小"字段,通过ACK端通知发送端;
  • 窗口大小字段越大,说明网络的吞吐量越高;
  • 接收端⼀旦发现自己的缓冲区快满了,就会将窗口大小设置成⼀个更小的值通知给发送端;
  • 发送端接受到这个窗⼝之后,就会减慢自己的发送速度;
  • 如果接收端缓冲区满了,就会将窗口置为0;这时发送方不再发送数据,但是需要定期发送⼀个窗⼝探 测数据段,使接收端把窗口大小告诉发送端.

在这里插入图片描述
接收端如何把窗口大小告诉发送端呢?回忆我们的TCP首部中,有⼀个16位窗⼝字段,就是存放了窗⼝大小信息

六:拥塞控制

TCP引入慢启动机制,先发少量的数据,探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传输
数据;
在这里插入图片描述
此处引入⼀个概念程为拥塞窗口

  • 发送开始的时候,定义拥塞窗口大小为1;
  • 每次收到⼀个ACK应答,拥塞窗⼝加1;
  • 每次发送数据包的时候,将拥塞窗⼝和接收端主机反馈的窗口大小做比较,取较小的值作为实际发送 的窗口;

像上面这样的拥塞窗⼝增长速度,是指数级别的."慢启动"只是指初使时慢,但是增⻓速度⾮常快.

  • 为了不增⻓的那么快,因此不能使拥塞窗口单纯的加倍.
  • 此处引⼊⼀个叫做慢启动的阈值
  • 当拥塞窗口超过这个阈值的时候,不再按照指数方式增长,而是按照线性方式增长
  • 当TCP开始启动的时候,慢启动阈值等于窗⼝最大值
  • 在每次超时重发的时候,慢启动阈值会变成原来的⼀半,同时拥塞窗⼝置回1;

少量的丢包,我们仅仅是触发超时重传;大量的丢包,我们就认为网络拥塞;
当TCP通信开始后,网络吞吐量会逐渐上升;随着网络发生拥堵,吞吐量会立刻下降;
在这里插入图片描述
拥塞控制,归根结底是TCP协议想尽可能快的把数据传输给对方,但是又要避免给网络造成太大压力的折中方案.

七:滑动窗口

刚才我们讨论了确认应答策略,对每⼀个发送的数据段,都要给⼀个ACK确认应答.收到ACK后再发送下
⼀个数据段.这样做有⼀个比较大的缺点,就是性能较差.尤其是数据往返的时间较长的时候.既然这样⼀发⼀收的⽅式性能较低,那么我们⼀次发送多条数据,就可以大大的提高性能(其实是将多个段的等待时间重叠在⼀起了).
在这里插入图片描述
窗口大小指的是无需等待确认应答而可以继续发送数据的最⼤值.上图的窗口大小就是4000个字节(四个段).

  • 发送前四个段的时候,不需要等待任何ACK,直接发送;
  • 收到第⼀个ACK后,滑动窗⼝向后移动,继续发送第五个段的数据;依次类推;
  • 操作系统内核为了维护这个滑动窗⼝,需要开辟发送缓冲区来记录当前还有哪些数据没有应答;只 有确认应答过的数据,才能从缓冲区删掉;
  • 窗口越大,则网络的吞吐率就越高;

那么如果出现了丢包,如何进行重传?这里分两种情况讨论.
情况⼀:数据包已经抵达,ACK被丢了.
在这里插入图片描述

这种情况下,部分ACK丢了并不要紧,因为可以通过后续的ACK进行确认;
情况⼆:数据包就直接丢了
在这里插入图片描述

  • 当某⼀段报文段丢失之后,发送端会⼀直收到1001这样的ACK,就像是在提醒发送端"我想要的是 1001"⼀样;

  • 如果发送端主机连续三次收到了同样⼀个"1001"这样的应答,就会将对应的数据1001-2000重新发送;

  • 这个时候接收端收到了1001之后,再次返回的ACK就是7001了(因为2001-7000)接收端其实之前就
    已经收到了,被放到了接收端操作系统内核的接收缓冲区中;

这种机制被称为"高速重发控制"(也叫"快重传").

八:延迟应答

如果接收数据的主机立刻返回ACK应答,这时候返回的窗口可能比较小.

  • 假设接收端缓冲区为1M.⼀次收到了500K的数据;如果立刻应答,返回的窗⼝就是500K;
  • 但实际上可能处理端处理的速度很快,10ms之内就把500K数据从缓冲区消费掉了;
  • 在这种情况下,接收端处理还远没有达到自己的极限,即使窗口再放大一些,也能处理过来;
  • 如果接收端稍微等⼀会再应答,比如等待200ms再应答,那么这个时候返回的窗口大小就是1M;

⼀定要记得,窗⼝越大,网络吞吐量就越大,传输效率就越高.我们的目标是在保证网 络不拥塞的情况下
尽量提高传输效率;
在这里插入图片描述

九:捎带应答

在延迟应答的基础上,我们发现,很多情况下,客户端服务器在应用层也是"⼀发⼀收"的.意味着客户端给服务器说了"How are you",服务器也会给客⼾端回⼀个"Fine,thank you";那么这个时候ACK就可以搭顺风车,和服务器回应的"Fine,thank you"⼀起回给客户端

TCP小结

为什么TCP这么复杂?因为要保证可靠性,同时又尽可能的提高性能.
可靠性:

  • 确认应答

  • 超时重发

  • 连接管理

  • 流量控制

  • 拥塞控制

提高性能:

  • 滑动窗口
  • 快速重传
  • 延迟应答
  • 捎带应答

其他:

  • 定时器(超时重传定时器,定时器,TIME_WAIT定时器等)
    在这里插入图片描述
    如果觉得文章不错,期待你的一键三连哦,你个鼓励是我创作的动力之源,让我们一起加油,顶峰相见!!!💓 💓 💓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1454993.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IgG1 (mouse), ELISA kit——ENZO热销产品

90分钟内可得结果的高特异性定量ELISA试剂盒 免疫球蛋白G(IgG)是一种免疫球蛋白单体,由两条(γ)重链和两条轻链组成。每个IgG分子包含两个抗原结合域和一个效应(Fc)域。Enzo Life Sciences可提供…

【hcie-cloud】【29】华为云Stack数据安全服务

文章目录 前言数据安全概述数据产业发展和敏感数据上云趋势下对数据安全的需求重大隐私数据泄露事件云端数据安全问题成为业务上云的主要障碍数据安全相关法律法规密集出台数据安全法 - 欧盟的GDPR中国的数据安全法端到端考虑数据安全数据安全生命周期华为云Stack全生命周期数据…

七、Mybatis缓存

缓存就是内存中的数据,常常来自对数据库查询结果的保存,使用缓存、可以避免频繁的与数据库进行交互,进而提高响应速度一级缓存是sqlSession级别的缓存,在操作数据库时需要构造sqlsession对象,在对象中有一个数据结构&a…

WEB APIs(2)

应用定时器可以写一个定时轮播图&#xff0c;如下 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport&qu…

React 更改程序入口点(index.js文件位置变更)

食用前提示&#xff1a;本文基于已经快速配置好的React环境而作&#xff0c;配置React环境详见拙作&#xff1a;React环境配置-CSDN博客~ 一、了解默认入口点 使用create-react-app快速搭建react环境后&#xff0c;npm start启动程序的默认入口点为/src/index(即src目录下的ind…

《白话C++》第10章 STL和boost,Page70~72 boost::scoped_ptr

《泛型》篇中提到的某个IT项目的辩论会&#xff0c; 一派坚持智能指针和裸指针可以“离婚”&#xff0c;它们是std::auto_ptr的支持者&#xff0c; 一派认为智能指针和裸指针不可以“离婚”&#xff0c;boost::scoped_ptr体现了他们的观点&#xff1a; boost::scoped_ptr基本…

OpenAI视频生成模型Sora的全面解析:从扩散Transformer到ViViT、DiT、VideoPoet

前言 真没想到&#xff0c;距离视频生成上一轮的集中爆发才过去三个月&#xff0c;没想OpenAI一出手&#xff0c;该领域又直接变天了 自打2.16日OpenAI发布sora以来&#xff0c;不但把同时段Google发布的Gemmi Pro 1.5干没了声音&#xff0c;而且网上各个渠道&#xff0c;大量…

NHANES数据库使用(1)

官网&#xff1a;NHANES - National Health and Nutrition Examination Survey Homepagehttps://www.cdc.gov/nchs/nhanes/index.htm 1、打开数据库 2、 选择数据集 B区检索方法和变量。C区检索数据集。A区含有B区和C区的功能。选择 NHANES 2017-March 2020打开。 3、打开数据…

普通人做抖音小店真的能赚钱吗?别在做美梦了,都醒醒吧!

大家好&#xff0c;我是电商糖果 糖果做电商七年了&#xff0c;这中间也起起落落过&#xff0c;2020年开始做抖音小店。 虽然靠着小店自己有了团队&#xff0c;翻了身。 但是只要有人问糖果&#xff0c;普通人做抖音小店真的能赚到钱吗&#xff1f; 我的回答依旧是看个人。…

最长子串和回文子串相关的算法题解

这里写目录标题 一、3. 无重复字符的最长子串二、5. 最长回文子串三、647. 回文子串四、516. 最长回文子序列 一、3. 无重复字符的最长子串 中等 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s “abcabcbb” 输出: 3 解释:…

ClickHouse从入门到精通(高级)

第1章 Explain查看执行计划 第2章 建表优化 第3章 ClickHouse语法优化规则 第4章 查询优化 第5章 数据一致性(重点) 第6章 物化视图 第7章 MaterializeMySQL引擎 第8章 常见问题排查

阿里云香港轻量应用服务器怎么样,建站速度快吗?

阿里云香港服务器中国香港数据中心网络线路类型BGP多线精品&#xff0c;中国电信CN2高速网络高质量、大规格BGP带宽&#xff0c;运营商精品公网直连中国内地&#xff0c;时延更低&#xff0c;优化海外回中国内地流量的公网线路&#xff0c;可以提高国际业务访问质量。阿里云服务…

智慧城市与数字孪生:实现城市可持续发展的关键

一、引言 随着全球城市化进程的加速&#xff0c;城市面临着诸多挑战&#xff0c;如资源紧张、环境恶化、交通拥堵等。为了解决这些问题&#xff0c;智慧城市的概念应运而生。智慧城市利用先进的信息通信技术&#xff0c;提升城市治理水平&#xff0c;改善市民的生活质量。而数…

基于8086单片机的数码管计时系统[proteus仿真]

基于8086单片机的数码管计时系统[proteus仿真] 8086仿真设计这个题目算是课程设计中常见的题目了&#xff0c;本期是一个基于8086单片机的数码管计时系统[proteus仿真] 需要的源文件和程序的小伙伴可以关注公众号【阿目分享嵌入式】&#xff0c;赞赏任意文章 2&#xffe5;&a…

IPsec、安全关联、网络层安全协议

网络层安全协议 IP 几乎不具备任何安全性&#xff0c;不能保证&#xff1a; 1.数据机密性 2.数据完整性 3.数据来源认证 由于其在设计和实现上存在安全漏洞&#xff0c;使各种攻击有机可乘。例如&#xff1a;攻击者很容易构造一个包含虚假地址的 IP 数据报。 IPsec 提供了标…

从零开始做题:逆向 ret2libc jarvisoj level1

1.题目信息 BUUCTF在线评测 2.原理 篡改栈帧上的返回地址为攻击者手动传入的shellcode所在缓冲区地址&#xff0c;并且该区域有执行权限。 3.解题步骤 3.1 首先使用checksec工具查看它开了啥保护措施 基本全关&#xff0c;栈可执行。 rootpwn_test1604:/ctf/work/9# chec…

RabbitMQ之 Direct 交换机

&#x1f47d;System.out.println(“&#x1f44b;&#x1f3fc;嗨&#xff0c;大家好&#xff0c;我是代码不会敲的小符&#xff0c;双非大四&#xff0c;Java实习中…”); &#x1f4da;System.out.println(“&#x1f388;如果文章中有错误的地方&#xff0c;恳请大家指正&a…

【python】python入门(变量名)

Hi~ o(*&#xffe3;▽&#xffe3;*)ブ今天一起来看看python入门之变量名吧~~ 变量名的规定&#xff1a; 举个例子&#xff1a; “违法”的变量名们 my love/my &#xff01;love错误&#xff1a;中间不能是空格或者其他符号1my_love错误&#xff1a;不能数字开头"my_l…

【Spring底层原理高级进阶】轻松掌握 Spring MVC 的拦截器机制:深入理解 HandlerInterceptor 接口和其实现类的用法

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《Spring 狂野之旅&#xff1a;底层原理高级进阶》 &#x1f680…

区块链技术和Hyperledger Fabric介绍

1 区块链介绍 1.1 区块链技术形成 1.1.1 起源 在比特币诞生之时&#xff0c;技术专家们开始研究比特币的底层技术&#xff0c;并抽象提取出来&#xff0c;形成区块链技术&#xff0c;或者称分布式账本技术。 1.1.2 定义 简称BT&#xff08;Blockchain technology&#xff…