1143.最长公共子序列
和718.最长重复子数组类似
包括二维数组初始化这些
不同之处在于递推公式主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
- 如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以
dp[i][j] = dp[i - 1][j - 1] + 1;
- 如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
105.不相交的线
思路最重要
直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。
拿示例一A = [1,4,2], B = [1,2,4]为例,相交情况如图:
其实也就是说A和B的最长公共子序列是[1,4],长度为2。 这个公共子序列指的是相对顺序不变(即数字4在字符串A中数字1的后面,那么数字4也应该在字符串B数字1的后面)
这么分析完之后,大家可以发现:本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!
** 和1143.最长公共子序列一模一样!
53.最大子序和
很简单的一道题,没啥好说的