(02)Hive SQL编译成MapReduce任务的过程

news2025/1/6 20:47:01

目录

一、架构及组件介绍

1.1 Hive底层架构

1.2 Hive组件

1.3 Hive与Hadoop交互过程

二、Hive SQL 编译成MR任务的流程

2.1 HQL转换为MR源码整体流程介绍

2.2 程序入口—CliDriver

2.3 HQL编译成MR任务的详细过程—Driver

2.3.1 将HQL语句转换成AST抽象语法树

词法、语法解析

2.3.2 将AST转换成TaskTree

语义解析

 生成逻辑执行计划

优化逻辑执行计划

 生成物理执行计划

 HQL编译成MapReduce具体原理

JOIN

 GROUP BY

DISTINCT

优化物理执行计划 

2.3.3 提交任务并执行


一、架构及组件介绍

1) Hive简介

  •  Hive是Facebook实现的一个开源的数据仓库工具。
  • 将结构化的数据文件映射为数据库表,并提供HQL查询功能,将HQL语句转化为MapReduce任务运行

2) Hive本质:HQL 转化成 MapReduce 程序

  • Hive 处理的数据存储在 HDFS
  • Hive 分析数据底层的实现是 MapReduce
  • 执行程序运行在 Yarn

1.1 Hive底层架构

1.2 Hive组件

  • 用户接口:Client
  1. CLI:shell命令行
  2. JDBC/ODBC:Hive中的Thrift服务器允许外部客户端通过网络与Hive进行交互,类似于JDBC或ODBC协议
  3. WEBUI:通过浏览器访问Hive
  • 元数据:Metastore
      通常是存储在关系数据库如 mysql/derby中。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
  • Hadoop
      数据利用 HDFS文件系统 进行存储,使用 MapReduce 进行计算。
  • 驱动器:Driver
  • 解析器(SQL Parser:将 SQL 字符串转换成抽象语法树 AST,这一步一般都用第 三方工具库完成,比如 antlr;对 AST 进行语法分析,比如表是否存在、字段是否存在、SQL 语义是否有误。
  • 编译器(Physical Plan:将 AST 编译生成逻辑执行计划。
  • 优化器(Query Optimizer:对逻辑执行计划进行优化。
  • 执行器(Execution:把逻辑执行计划转换成可以运行的物理计划。当下Hive支持MapReduce、Tez、Spark3种执行引擎

    Driver驱动器总结:完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,随后执行引擎调用执行。当下Hive支持MapReduce、Tez、Spark3种执行引擎。

1.3 Hive与Hadoop交互过程

上图的基本流程是:

  • 步骤1:Client 客户端调用 Driver的接口;
  • 步骤2:Driver驱动器为查询创建会话句柄,并将查询发送到 Compiler(编译器组件)生成执行计划;
  • 步骤3和4:编译器从元数据存储库中获取本次查询所需要的元数据;
  • 步骤5:编译器生成各个阶段Stage的执行计划,如果是一个MR任务,该执行计划分为两部分:Map Operator Tree(map端的执行计划树)和Reduce Operator Tree(reduce端的执行计划树),再将生成的逻辑执行计划发给Driver;
  • 步骤6:Driver将逻辑执行计划发给执行引擎Execution Engine;(将逻辑执行计划转化成具体的物理执行计划,即mr任务)

步骤6.1 / 6.2  /6.3 /6.4:执行引擎将这些阶段Stage的具体执行内容提交给对应的组件。在每个 Task(mapper/reducer) 任务中,从HDFS文件中读取与表相关的数据,并通过算子树依次传递。最终的数据集借助序列化器写入到临时的HDFS文件中。

  • 步骤7、8:临时HDFS文件的内容由执行引擎读取后,通过Driver将查询结果发送给Client 客户端

简化版本:

总结:Hive通过给用户提供的一系列交互接口,接收到用户的指令(sql),使用自己的driver,结合元数据(metastore),将这些指令翻译成 mapreduce任务,提交到hadoop中执行,最后将执行返回的结果输出到用户交互接口。

二、Hive SQL 编译成MR任务的流程

2.1 HQL转换为MR源码整体流程介绍

2.2 程序入口—CliDriver

我们执行一个 HQL 语句通常有以下几种方式:
  • $HIVE_HOME/bin/hive进入客户端,然后执行HQL
  • $HIVE_HOME/bin/hive -e “hql”
  • $HIVE_HOME/bin/hive -fhive.sql
  • 先开启hivesever2服务端,然后通过JDBC方式连接远程提交HQL
 可以知道我们执行 HQL 主要依赖于 $HIVE_HOME/bin/hive  和  $HIVE_HOME/bin/
而在这两个脚本中,最终启动的 JAVA 程序的主类为
org.apache.hadoop.hive.cli.CliDriver ,所以其实 Hive程序的入口就是“CliDriver ”这个类。

2.3 HQL编译成MR任务的详细过程—Driver

2.3.1 将HQL语句转换成AST抽象语法树

  • 词法、语法解析

          Antlr 定义 SQL 的语法规则,完成 SQL 词法,语法解析,将 SQL 转化为抽象语法树 AST Tree;

 例如:AST如下图:

2.3.2 将AST转换成TaskTree

  • 语义解析

         遍历 AST Tree,抽象出一条SQL最基本组成单元 QueryBlock(查询块),该块包括三个部分:输入源,计算过程,输出。简单而言一个QueryBlock就是一个子查询。

  • 生成逻辑执行计划

         遍历 QueryBlock,翻译为执行操作树 OperatorTree(操作树,也就是逻辑执行计划);Hive最终生成的MapReduce任务,Map阶段和Reduce阶段均由OperatorTree组成。

基本的操作符包括:

  1. TableScanOperator
  2. SelectOperator

  3. FilterOperator

  4. JoinOperator

  5. GroupByOperator

  6. ReduceSinkOperator

     Operator操作算子在Map Reduce阶段之间的数据传递是一个流式的过程。每一个Operator对一行数据操作之后将数据传递给childOperator计算。

      由于Join/GroupBy需要在Reduce阶段完成,所以在生成相应操作的Operator之前都会先生成一个ReduceSinkOperator,将字段组合并序列化为Reduce KeyReduce /value, Partition Key。

  • 优化逻辑执行计划

      逻辑优化器对OperatorTree(操作树)进行逻辑优化。例如合并不必要的ReduceSinkOperator,减少数据传输及 shuffle 数据量; 

 ​​​​​​   Hive中的逻辑查询优化可以大致分为以下几类:

  1. 投影修剪

  2. 谓词下推

  3. 多路 Join

  •  生成物理执行计划

       遍历 OperatorTree,转换成TaskTree(任务树,即物理执行计划)即MR任务。生成物理执行计划即是将逻辑执行计划生成的OperatorTree转化为MapReduce Job的过程。

 HQL编译成MapReduce具体原理

  (1) hive.fetch.task.conversion参数

 在Hive中,有些简单任务既可以转化为MR任务,也可以Fetch本地抓取,即直接读取table对应的hdfs存储目录下文件得到结果,通过hive.fetch.task.conversion参数配置。默认情况使用参数more,例如:SELECTFILTERLIMIT等简单查找都使用Fetch本地抓取,而其他复杂sql转为MR任务。

 (2)转化为MR任务的SQL

       需要转换成MR任务的sql通常会涉及到key值的shuffle,例如:join、groupby、distinct等,接下来介绍此三种情况的sql转化

  • JOIN

JOIN任务转化为MR任务的流程如下:

  • Map: 生成键值对,以join on 条件中的列作为key,以join之后所关心的列作为value值,在value中还会包含表的Tag信息,用于标明此value对应哪张表
  • Shuffle: 根据key值进行hash分区, 按照hash值将键值对(key-value)发送到不同的reducer中
  • Reduce:Reducer通过Tag来识别不同的表中的数据,根据key值进行join操作

  以下列sql为例:

SELECT pageid, 
       age 
FROM page_view 
JOIN userinfo 
ON page_view.userid = userinfo.userid; 

 sql转化为mr任务流程如下图:

  •  GROUP BY

  GROUP BY任务转化为MR任务的流程如下:

  • Map: 生成键值对,以GROUP BY条件中的列作为key,以聚集函数的结果作为value
  • Shuffle: 根据key值进行hash分区, 按照hash值将键值对(key-value)发送到不同的reducer中
  • Reduce:根据SELECT子句的列以及聚集函数进行Reduce

以下列sql为例:

SELECT pageid,
       COUNT(1) as num
FROM page_view
GROUP BY pageid;

sql转化为mr任务流程如下图:

  • DISTINCT

      与GROUP BY操作相同,只是键值对中的value可为空。

以下列sql为例:

SELECT DISTINCT pageid FROM page_view;

待补充~

  • 优化物理执行计划 

       物理优化器对进行TaskTree(任务树,即物理执行计划)进行物理优化;

Hive中的物理优化可以大致分为以下几类:

  1. 分区修剪(Partition Pruning)

  2. 基于分区和桶的扫描修剪(Scan pruning)

  3. 在某些情况下,在 mapper端进行 Group By分组的预聚合

  4. 在 mapper端执行Join(map join)

  5. 如果是简单的select查询,可以设置为本地执行,避免使用MapReduce作业

    经过2.3.1 及2.3.2 这六个阶段,HQL就被解析映射成了集群上的 MR任务。

2.3.3 提交任务并执行

  • 获取MR临时工作目录
  • 定义Partitioner
  • 定义Mapper和Reducer
  • 实例化Job任务
  • 提交Job任务并执行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1451754.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二叉树的锯齿形层序遍历

1.题目 这道题是2024-2-16的签到题,题目难度为中等。 考察知识点为BFS算法和双端队列。 题目链接:二叉树的锯齿形层序遍历 给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行…

VScode写LaTeX配置,实测有效

环境配置请看LaTeX环境配置-TexLive,实测有效http://t.csdnimg.cn/0txlL VScode写LaTeX配置 0.smatra pdf下载 如果使用外部pdf查看器,比如我用的sumatra pdf,官网是Sumatra PDF reader download page 下载对应版本,比如64位,下…

【STM32 CubeMX】I2C中断方式与DMA方式

文章目录 前言一、I2C中断方式1.1 CubeMX配置I2C中断1.2 I2C中断函数使用Master模式Mem模式 1.3 DMA方式发送和接收CubeMX配置IIC DMA方式Master模式Mem模式 总结 前言 在STM32 CubeMX环境中,I2C(Inter-Integrated Circuit)通信协议的实现可…

机器人专题:我国机器人产业园区发展现状、问题、经验及建议

今天分享的是机器人系列深度研究报告:《机器人专题:我国机器人产业园区发展现状、问题、经验及建议》。 (报告出品方:赛迪研究院) 报告共计:26页 机器人作为推动工业化发展和数字中国建设的重要工具&…

【数据结构】无向图创建邻接矩阵、深度优先遍历和广度优先遍历(C语言版)

无向图创建邻接矩阵、深度优先遍历和广度优先遍历 一、概念解析: (1)无向图:(2)邻接矩阵: 二、创建邻接矩阵:三、深度遍历、广度遍历 (1)深度遍历概念&#x…

模型 IPO(输入、处理、输出)学习模型

系列文章 分享 模型,了解更多👉 模型_总纲目录。重在提升认知。信息转化与传递。 1 模型 IPO(输入、处理、输出)学习模型的应用 1.1 项目管理知识体系 PMBOK 中的IPO应用 在项目管理领域,PMBOK(Project Management Body of Know…

ChatGPT绘图指南:DALL.E3玩法大全(一)

一、 DALLE.3 模型介绍 1、什么是 DALLE.3 模型? DALLE-3模型,是一种由OpenAI研发的技术,它是一种先进的生成模型,可以将文字描述转化为清晰的图片。这种模型的名称"DALLE"实际上是"Deep Auto-regressive Latent …

云计算基础-存储虚拟化(深信服aSAN分布式存储)

什么是存储虚拟化 分布式存储是利用虚拟化技术 “池化”集群存储卷内通用X86服务器中的本地硬盘,实现服务器存储资源的统一整合、管理及调度,最终向上层提供NFS、ISCSI存储接口,供虚拟机根据自身的存储需求自由分配使用资源池中的存储空间。…

AcWing 1235. 付账问题(贪心)

[题目概述] 几个人一起出去吃饭是常有的事。 但在结帐的时候,常常会出现一些争执。 现在有 n 个人出去吃饭,他们总共消费了 S 元。 其中第 i 个人带了 a i a_i ai​ 元。 幸运的是,所有人带的钱的总数是足够付账的,但现在问题来…

计算机网络——13P2P应用

P2P应用 纯P2P架构 没有(或极少)一直运行额服务器任意端系统都可以直接通信利用peer的服务能力Peer节点间歇上网,每次IP地址都有可能变化 例子: 文件分发流媒体VoIP 文件分发:C/S vs P2P 问题:从一台…

《Go 简易速速上手小册》第2章:控制结构与函数(2024 最新版)

文章目录 2.1 条件语句:决策的艺术2.1.1 基础知识讲解2.1.2 重点案例:用户角色权限判断实现用户角色权限判断扩展功能实现代码功能扩展:添加或删除用户 2.1.3 拓展案例 1:成绩等级判断实现成绩等级判断功能实现代码扩展功能&#…

Spring中的事务实现、失效场景即AOP的相关概念理解

spring实现事务(声明式事务)的本质就是aop完成的,它会对方法的前后进行拦截,在执行方法之前开启事务,在执行完目标方法之后根据执行情况提交或回滚事务。aop就是面向切面编程,在spring中将那些与业务无关,但却对多个对象产生影响的…

Opencv简单图像操作

Opencv 一、读取图片 1.imshow Mat imread(const string& filename, intflags1 );flags: enum { /* 8bit, color or not */CV_LOAD_IMAGE_UNCHANGED -1, /* 8bit, gray */CV_LOAD_IMAGE_GRAYSCALE 0, /* ?, color */CV_LOAD_IMAGE_COLOR 1, /* any depth, ? */…

深度学习之线性模型

深度学习之线性模型 y w * x模型思路 y w * x b模型思路 y w * x模型 思路 这里求权重w , 求最适合的权重,就是求损失值最小的时候 这里用穷举法:在一个范围内,列出w的所有值,并且计算出每组数据的平均损失值,以w 为横坐标, 损失值为纵坐…

定时器按秒计时

一、函数学习 二、代码、 main.c #include "stm32f10x.h" // Device header #include "Delay.h" #include "OLED.h" #include "Timer.h"uint16_t Num;int main(void) {OLED_Init();Timer_Init(); OLED_ShowString(1,1,"Num:…

树莓派5 EEPROM引导加载程序恢复镜像

树莓派5不能正常启动,可以通过电源led灯的闪码来判断错误发生的大致情形。 LED警告闪码 如果树莓派由于某种原因无法启动,或者不得不关闭,在许多情况下,LED会闪烁特定的次数来指示发生了什么。LED会闪烁几次长闪烁,然…

Linux POSIX信号量 线程池

Linux POSIX信号量 线程池 一. 什么是POSIX信号量?二. POSIX信号量实现原理三. POSIX信号量接口函数四. 基于环形队列的生产消费模型五. 线程池 一. 什么是POSIX信号量? POSIX信号量是一种用于同步和互斥操作的机制,属于POSIX(Po…

C++入门篇——命名空间

在C/C中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存 在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化, 以避免命名冲突或名字污染,namespace关键…

Calendar的使用(Java)

直接从需求来理解:将2024年2月16日增加一个月 如果不使用Calendar的话,我们需要定义字符串记住这个日期,然后把字符串解析成Date日期对象,通过Date日期对象获取其毫秒值,然后增加一个月的毫秒值,再格式化时…

社区养老|社区养老服务系统|基于springboot社区养老服务系统设计与实现(源码+数据库+文档)

社区养老服务系统目录 目录 基于springboot社区养老服务系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员部分功能 (1) 用户管理 (2)服务种类管理 (3)社区服务管理 &#xff08…