卷积神经网络的基本结构

news2024/11/27 9:46:36

卷积神经网络的基本结构

与传统的全连接神经网络一样,卷积神经网络依然是一个层级网络,只不过层的功能和形式发生了变化。

典型的CNN结构包括:

  1. 数据输入层(Input Layer)
  2. 卷积层(Convolutional Layer)
  3. 激活层(Activation Layer)
  4. 池化层(Pooling Layer)
  5. 全连接层(Full Connection Layer)
  6. 损失层(Loss Function Layer)
  7. 精度层(Accuracy Layer)

1.数据输入层

数据输入层不属于网络结构。与传统的全连接神经网络不同,卷积神经网络的输入层是原始图像,而非提取的信息,因此卷积神经网络是一个无监督的特征学习网络

数据输入层主要对原始图像数据进行预处理,基础操作包括取均值灰度归一化,还有一些数据增强的相关操作。

# 这是一个典型的使用protobuf协议进行配置的网络输入层,它是Caffe的深度学习模型的配置文件
layer{
    name: "data"
    type: "ImageData"# 输入层的类型是ImageData,也就是原生的图像格式
    top: "data"
    top: "clc-label"
    # 该层有两个参数:image_data_param 和 transform_param 
    # 参数有一些属性,都是图像预处理参数
    image_data_param { # 这个参数有三个属性
        source: "all_shuffle_train.txt" # 表示输入训练文件路径
        batch size: 96 # 表示训练时输入数据的批处理大小
        shuffle: true # 表示是否采用随机操作
    }
    transform_param {
        mean_value: 104.008 # mean_value表示GRB的均值
        mean_value: 116.669 
        mean_value: 122.675
        crop_size: 48 # 表示输入训练图像尺寸
        mirror: true # 是数据增强操作,指代水平翻转
    }
    include: { phase: TRAIN}
}

2.卷积层

卷积层是网络的特征提取层。卷积神经网络一般包含多个卷积层,一个卷积层可以有多个不同的卷积核。

# 这是一个典型的卷积网络层。
# 包含两类参数,即权重参数和偏置参数,其中配置了两个param属性,分别表示这两类参数的学习率
layer{
    name: "conv1"
    type: "Convolution"
    bottom: "data"
    top: "conv1"
    param {
        lr_mult:1
        decay_mult:1
    }
    param {
        lr_mult:2
        decay_mult: 0
    }
    convolution_param {
        num_output:12 # 输出特征层的通道数目
        pad:1 # 在卷积前进行边界填充像素的行列数
        kernel_size:3 # 卷积步长
        stride:2
        weight_filler{ # 卷积权重参数的初始化策略
            type:"xavier"
            std:0.01
        }
        bias_filler { # 这里配置的是偏置参数的初始化方法
            type: "constant"
            value:0.2
        }
    }
}

3.激活层

网络需要激活层进行特征的选择和抑制,早期的Sigmoid等函数使用较多,现在多实用形式更加简单的ReLU函数。

# 这是一个激活层
# RELU激活层非常简单,没有需要学习的参数。(有的激活层有需要学习的参数)
layer{
    name: "relu1"
    type:"ReLU"
    bottom: "conv1"
    top: "conv1"
}

4.池化层

池化层用于降低特征平面的分辨率及抽象特征

池化用于压缩网络参数和数据,以降低过拟合。

如果输入为一幅图像,那么池化层最主要的作用就是在压缩图像的同时保持该图像特征的不变性

# 这是一个池化层
# 池化层包含一个参数pooling_param
layer {
    name: "pool"
    type: "Pooling"
    bottom: "conv3"
    top: "pool"
    pooling_param { # 这个参数中有三个属性
        pool: MAX # 最大池化
        kernel_size: 3 # 池化操作的核的大小
        stride: 2 # 步长
    }
}

5.全连接层

全连接层通常在卷积神经网络结构的最后,它也有权重和偏置两个参数。

# 这是一个全连接层,通常在卷积神经网络结构的最后,也有权重和偏置两个参数
# 其中配置了两个param属性,分别表示这两类参数的学习率
layer {
    name: "fc"
    type: "InnerProduct"
    bottom: "pool"
    top: "fc"
    param {
        lr_mult: 1
        decay_mult: 1
    }
    param {
        lr_mult: 2
        decay_mult: 1
    }
    inner_product_param {
        num_output: 2 # 输出特征维度,通常是分类任务的类别数目
        weight_filler{ # 权重参数的初始化方式
            type: "xavier"
        }
        bias_filler{ # 偏置参数的初始化方式
            type: "constant"
            value: 0
        }
    }
}

6.损失层

卷积神经网络的优化原理同一般的机器学习算法类似,需要定义损失目标函数,找到最小化损失函数的参数值,通常利用SGD(随机梯度下降)等算法来调整权值

# 这是一个softmax损失层,损失层的输入就是网络的输出和真实的标签
layer {
    name: "loss"
    type: "SoftmaxWithLoss"
    bottom: "fc"
    bottom: "clc-label"
    top: "loss"
}

7.精度层

损失目标函数可以反映网络性能的优劣,但不是最终需要的指标。

对于分类任务,最终需要的是分类精度;

对于回归任务,需要的是定位精度。

因此,一个卷积神经网络还需要接上网络精度层

# 这是一个分类任务的精度层,它与损失层一样,输入是网络的输出和真实的标签
layer {
    bottom: "fc"
    bottom: "clc-label"
    top: "acc"
    name: "acc"
    type: "Accuracy"
}

上面定义的完整的网络结构如图1.20所示。

参考文献:

1.书名:《深度学习之图像识别 核心算法与实战案例 (全彩版)》

作者:言有三著

出版社:清华大学出版社

出版时间:2023年7月第一版(第一次印刷)

ISBN:978-7-302-63527-7

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1450896.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android 9.0 禁用adb shell input输入功能

1.前言 在9.0的系统rom产品开发中,在进行一些定制开发中,对于一些adb shell功能需要通过属性来控制禁止使用input 等输入功能,比如adb shell input keyevent 响应输入事件等,所以就需要 熟悉adb shell input的输入事件流程,然后来禁用adb shell input的输入事件功能,接…

函数求导法则【高数笔记】

【分类】 1. 四则运算求导 2. 复合运算求导 3. 整体思想求导 #整体思想求导本质是运用复合运算求导,只不过是对复合运算求导的一种精炼 #无论是具体函数还是抽象函数求导,方法是一致的 【四则运算求导】 加,减,乘,除&a…

openEuler 22.03 LTS 上源码安装 PostgreSQL 15

安装PostgreSQL 15 1 安装必要的依赖 #yum install -y readline-devel zlib-devel gcc2、下载源码 # wget https://ftp.postgresql.org/pub/source/v15.6/postgresql-15.6.tar.gz # tar -xzvf postgresql-15.6.tar.gz3 配置 # cd postgresql-15.6/ # ./configure4 编译安装…

JVM-JVM中对象的结构

对象内存布局 对象里的三个区: 对象头(Header):Java对象头占8byte。如果是数组则占12byte。因为JVM里数组size需要使用4byte存储。 标记字段MarkWord: 用于存储对象自身的运行时数据,它是synchronized实现轻…

图像识别基础之模板匹配

principle 图像匹配 本质:图像的相似度很高(矩阵的相似度很高) code /*\brief 我的图像匹配函数,获取差方和均值最小的矩阵作为结果\param srcPicFile:用以匹配的图像文件\param templatePicFile:模板图像文件\param destPicFile:输出的检测结果文件…

【读书笔记】ICS设备及应用攻击(一)

工控系统通常是由互联设备所构成的大型复杂系统,这些设备包括类似于人机界面(HMI)、PLC、传感器、执行器以及其他使用协商好的协议进行相互通信的设备。所有交互背后的驱动力都是软件,软件为工控系统中几乎所有部分的运行提供支撑…

鸿蒙开发-HarmonyOS UI架构

初步布局Index 当我们新建一个工程之后,首先会进入Index页。我们先简单的做一个文章列表的显示 class Article {title?: stringdesc?: stringlink?: string }Entry Component struct Index {State articles: Article[] []build() {Row() {Scroll() {Column() …

Python是垃圾?千万不要再学Python了?

“人生苦短,快学Python”这句话,相信大家都有看到过,但是有细心留意过,就会发现Python其实在网上的评价褒贬不一,有好评,也有差评。这就会给那些不懂Python却想要学Python的一些人造成困惑,我到…

主从延迟如何解决

最近项目上线,遇到了主从问题。按理说公司基建不至于出现这种问题,但就是出现了。可能因为用的不是原生的MySQL吧。主从延迟会给前端和服务端带来很多问题,需要花费时间用工程手段来解决,我认为这是很不合理的。 举几个因为主从延…

数字IC实践项目(9)— Tang Nano 20K: I2C OLED Driver

Tang Nano 20K: I2C OLED Driver 写在前面的话硬件模块RTL电路和相关资源报告SSD1306 OLED 驱动芯片SSD1306 I2C协议接口OLED 驱动模块RTL综合实现 总结 写在前面的话 之前在逛淘宝的时候偶然发现了Tang Nano 20K,十分感慨国产FPGA替代方案的进步之快;被…

51单片机项目(30)——基于51单片机的心率血氧脉搏检测的proteus仿真

1.功能设计 可以测量脉搏、心率、血氧浓度、体温,并且实时显示在LCD1602屏幕上,(第一行是体温血氧,第二行是心率脉搏)。 (需要完整源文件的,直接看最后一节) 另外,还…

PXE实现自动批量安装部署操作系统

目录 一、PXE介绍 二、PXE涉及的相关知识点 三、搭建PXE网络体系的前提 四、服务端要安装一系列的依赖环境 五、搭建 PXE 远程安装服务器 5.1、安装并启动TFTP服务 5.2、安装并启用 DHCP 服务 5.3、准备 Linux 内核、初始化镜像文件、准备 PXE 引导程序 5.4、安装FTP服…

【C++第二阶段】赋值运算符重载

你好你好&#xff01; 以下内容仅为当前认识&#xff0c;可能有不足之处&#xff0c;欢迎讨论&#xff01; 文章目录 赋值运算符重载 赋值运算符重载 实验①&#xff0c;还没有对析构运算符重载时 #include<iostream> #include<string> using namespace std;clas…

1Coze平台介绍

2023年随着OpenAI推出GPT 3.5&#xff0c;AI赛道变得更加火热。GPT&#xff08;Generative Pre-trained Transformer&#xff09;是一种自然语言处理&#xff08;NLP&#xff09;模型&#xff0c;用于生成文本、理解语言和进行各种语言任务。GPT是由OpenAI开发的&#xff0c;它…

【C语言】简单贪吃蛇实现保姆级教学!!!

关注小庄 顿顿解馋૮(˶ᵔ ᵕ ᵔ˶)ა 新年快乐呀小伙伴 引言&#xff1a; 小伙伴们应该都有一个做游戏的梦吧&#xff1f;今天让小庄来用C语言简单实现一下我们的童年邪典贪吃蛇&#xff0c;顺便巩固我们的C语言知识&#xff0c;请安心食用~ 文章目录 贪吃蛇效果一.游戏前工作…

ubuntu22.04@laptop OpenCV Get Started: 011_edge_detection

ubuntu22.04laptop OpenCV Get Started: 011_edge_detection 1. 源由2. edge_detection应用Demo2.1 C应用Demo2.2 Python应用Demo 3. 重点逐步分析3.1 GaussianBlur去噪3.2 Sobel边缘检测3.2.1 SobelX方向边缘检测3.2.2 SobelY方向边缘检测3.2.3 SobelXY方向边缘检测 3.3 Canny…

AI大模型专题:工业大模型技术应用与发展报告1.0

今天分享的是AI大模型系列深度研究报告&#xff1a;《AI大模型专题&#xff1a;工业大模型技术应用与发展报告1.0》。 &#xff08;报告出品方&#xff1a;中国信通院&#xff09; 报告共计&#xff1a;25页 人工智能的几个相关概念 大模型&#xff1a;即基础模型&#xff…

精品jsp+ssm汽车店维保信息系统

《[含文档PPT源码等]精品jspssm汽车店维保信息系统[包运行成功]》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功&#xff01; 使用技术&#xff1a; 开发语言&#xff1a;Java 框架&#xff1a;ssm 技术&#xff1a;JSP JDK版本&…

NBlog个人博客部署过程记录 -- 后端springboot + 前端vue

项目是fork的Naccl大佬NBlog项目&#xff0c;页面做的相当漂亮&#xff0c;所以选择了这个。可以参考2.3的效果图 惭愧&#xff0c;工作两年了也每个自己的博客系统&#xff0c;趁着过年时间&#xff0c;开始搭建一下. NBlog原项目的github链接&#xff1a;Naccl/NBlog: &#…

问题:宋朝为了加强皇帝对司法权的直接控制建立了() #微信#微信问题:宋朝为了加强皇帝对司法权的直接控制建立了() #微信#微信

问题&#xff1a;宋朝为了加强皇帝对司法权的直接控制建立了&#xff08;&#xff09; A.大理寺 B.刑部 C.审刑院 D.廷尉 参考答案如图所示