随机过程及应用学习笔记(四) 马尔可夫过程

news2025/1/16 4:01:21

马尔可夫过程是理论上和实际应用中都十分重要的一类随机过程。

目录

前言

一、马尔可夫过程的概念

二、离散参数马氏链

1 定义

2 齐次马尔可夫链

3 齐次马尔可夫链的性质

三、齐次马尔可夫链状态的分类

四、有限马尔可夫链

五、状态的周期性

六、极限定理

七、生灭过程

总结


前言

经典力学中,在一给定时刻t的轨道,完全可以用在某时刻t0<t的状态确定,而不必知道t0前的状态。这一原则推广到遵从概率规律而不是决定性规律的体系,即当过程在t-t0时刻所处的状态已知的情况下,过程在时刻t(t>≥t0)所处的状态与过程在t-t0时刻之前的状态无关。这种已知“现在”的条件下,“将来”与“过去”无关的性质,就是直观意义下的马尔可夫性或称为无后效性。具有无后效性的过程称为马尔可夫过程。


一、马尔可夫过程的概念

一个马尔可夫过程由以下几个要素构成:

  1. 状态空间 (State Space): 表示可能的状态集合,记作 S。

  2. 转移概率 (Transition Probability): 描述从一个状态到另一个状态的概率。对于离散时间的情况,可以用转移矩阵 P 表示,其中 P(i, j) 表示从状态 i 转移到状态 j 的概率。数学上,这可以表示为:

    P(Xn+1​=j∣Xn​=i)=Pij​

    其中Xn​ 表示在时刻 n 的状态,Pij​ 是从状态 i 转移到状态 j 的概率。

  3. 初始概率分布 (Initial Probability Distribution): 描述在初始时刻系统处于每个状态的概率分布。

马尔可夫过程可以分为离散时间马尔可夫链和连续时间马尔可夫过程两种。在连续时间的情况下,转移概率可以用转移率 (transition rate) 来描述

二、离散参数马氏链

1 定义

离散参数马氏链(Discrete-time Markov Chain)是一个随机过程,具有马尔可夫性质,而且在离散的时间步长内进行状态的转移。以下是离散参数马氏链的一般定义:

  1. 状态空间 (State Space): 表示系统可能处于的所有状态的集合,通常用 S 表示。

  2. 初始概率分布 (Initial Probability Distribution): 描述在初始时刻系统处于每个状态的概率分布,通常用 P(X0​=i) 表示,其中 i 是状态空间中的一个状态。

  3. 转移概率 (Transition Probability): 描述在给定当前状态的情况下,系统转移到下一个状态的概率。用 Pij​ 表示从状态 i 转移到状态 j 的概率,其中 i,j∈S。转移概率矩阵 P 是一个矩阵,其元素为Pij​。

    转移概率满足以下性质: P(Xn+1​=j∣Xn​=i)=Pij​

    对于所有的 i,j∈S 和 n=0,1,2,…。

  4. 马尔可夫性 (Markov Property): 离散参数马氏链具有无后效性,即在给定当前状态的情况下,未来的状态只依赖于当前状态,而与过去的状态无关。

2 齐次马尔可夫链

齐次马尔可夫链(Homogeneous Markov Chain)是指在其转移概率在时间上保持不变的离散参数马尔可夫链。这意味着系统的状态转移概率在时间上是恒定的,不依赖于具体的时间步长。

具体来说,对于一个齐次马尔可夫链,转移概率 Pij​ 在不同的时间步长上是相同的。即对于所有的状态 i,j 和时间步长 n,都有:

P(Xn+1​=j∣Xn​=i)=Pij​

其中Pij​ 是常数,矩阵 P 中的元素。这表示齐次马尔可夫链的转移概率矩阵在时间上保持不变。

齐次马尔可夫链的特性使得我们可以更容易地分析系统的稳定性和长期行为。通过对转移概率矩阵的特征值和特征向量进行分析,可以得到关于系统长期行为的信息,例如平稳分布等。

3 齐次马尔可夫链的性质

齐次马尔可夫链(Homogeneous Markov Chain)具有一些重要的性质,这些性质有助于我们理解和分析系统在长期演变中的行为。以下是齐次马尔可夫链的一些主要性质:

  1. 稳定分布(Stationary Distribution): 如果齐次马尔可夫链具有有限的状态空间且是不可约的(即从任一状态可以到达任一其他状态),则存在一个唯一的稳定分布。该稳定分布是一个概率分布,表示在长时间内系统处于各个状态的概率。稳定分布可以通过解 πP=π 的方程得到,其中 π 是稳定分布向量,P 是转移概率矩阵。

  2. 周期性(Periodicity): 齐次马尔可夫链可能具有周期性,即存在一个正整数 d,使得从某一状态出发,返回该状态的最小步数是 d 的倍数。如果 d=1,则称该状态是非周期的;否则,称为周期为 d。

  3. 吸收态(Absorbing States): 一些状态可能是吸收态,即从这些状态出发,不可能离开。一旦达到吸收态,系统将永远留在这些状态上。

  4. 遍历性(Recurrence): 齐次马尔可夫链中的状态可以分为遍历态和非遍历态。如果从某一状态出发,最终回到该状态的概率为1,则称该状态是遍历态;否则,称为非遍历态。

  5. 极限分布(Limiting Distribution): 如果齐次马尔可夫链是不可约的且非周期的,那么它在长时间内会趋向于一个极限分布。这意味着随着时间的推移,系统的状态分布将收敛到一个稳定的概率分布。

三、齐次马尔可夫链状态的分类

在齐次马尔可夫链中,状态可以被分类为以下几类:

  1. 遍历态(Recurrent States): 一个状态是遍历态,如果从该状态出发,经过一定的时间步骤后,有概率1回到该状态。遍历态可以进一步分为正常遍历态和零遍历态:

    • 正常遍历态(Positive Recurrent States):如果期望回到该状态的时间是有限的,即 E(Ti​∣X0​=i)<∞,其中 Ti​ 是回到状态 i 所需的步数。
    • 零遍历态(Null Recurrent States):如果期望回到该状态的时间是无限的,即 E(Ti​∣X0​=i)=∞。
  2. 非遍历态(Transient States): 一个状态是非遍历态,如果从该状态出发,经过一定的时间步骤后,有概率0回到该状态。非遍历态是一种一次性的状态,一旦离开就不再返回。

  3. 吸收态(Absorbing States): 一个状态是吸收态,如果从该状态出发,无论经过多少步骤,都不可能离开。吸收态是一种特殊的遍历态。

  4. 周期性(Periodic States): 一个状态可能是周期性的,即存在一个正整数 d,使得从该状态出发,返回该状态的最小步数是 d 的倍数。如果d=1,则称该状态是非周期的。

四、有限马尔可夫链

五、状态的周期性

在马尔可夫链中,状态的周期性描述了从某个状态出发,返回该状态的步数的性质。一个状态的周期性被定义为该状态上的最小正整数 d,使得从该状态出发返回的步数都是 d 的倍数。

形式化地,对于状态 i,其周期 di​ 定义如下:

di​=gcd{n>0:P(Xn​=i∣X0​=i)>0}

其中 gcdgcd 表示最大公约数。如果di​=1,则状态 i 是非周期的;否则,它是周期为 di​ 的周期性状态。

状态的周期性有一些重要的性质:

  1. 周期状态的集合: 马尔可夫链的状态可以分为不同的周期性类别,每个类别包含具有相同周期的状态。这使得我们可以将状态空间分解为周期性类别,从而更好地理解系统的结构。

  2. 周期性状态的影响: 对于非周期状态,长期行为通常更容易分析,因为系统在这些状态间随着时间的推移更加均匀。然而,周期性状态可能导致系统的行为变得更为复杂,因为它涉及到周期性的振荡。

  3. 周期性状态的影响: 在周期性状态的情况下,系统可能在某些时间步长内呈现出规律性的变化,而在另一些时间步长内可能呈现出较为静态的状态。

六、极限定理

两个与马尔可夫过程相关的极限定理是大数定律中心极限定理

  1. 大数定律(Law of Large Numbers): 大数定律对于随机过程的极限定理描述了随机变量序列的均值在样本容量趋于无穷时的稳定性。对于马尔可夫过程,大数定律可以表示为,在长时间内,马尔可夫过程的状态分布趋于稳定。这意味着在马尔可夫链中,随着时间的推移,系统的状态分布趋于某个稳定的分布。

  2. 中心极限定理(Central Limit Theorem): 中心极限定理是另一个重要的极限定理,它描述了随机变量序列的和或均值在样本容量趋于无穷时的分布。对于马尔可夫过程,中心极限定理可以用来描述在一些条件下,随机过程的和或均值的分布在适当的标准化下趋于正态分布。这个定理对于理解马尔可夫过程的渐近性质非常有帮助。

七、生灭过程

生灭过程(Birth-and-Death Process)是马尔可夫过程的一种,其中系统中的状态可以通过出生和死亡两种基本的随机事件进行转移。这类过程通常用于模拟描述人口、分子数、队列长度等随时间变化的数量。

生灭过程的特点包括:

  1. 有限状态空间: 生灭过程通常涉及有限个状态。这些状态通常按照一定的顺序排列,形成状态链。

  2. 状态转移: 在生灭过程中,状态之间的转移只能通过出生(birth)和死亡(death)两种基本事件进行。出生事件导致系统的状态增加,而死亡事件导致状态减少。

  3. 状态转移概率: 生灭过程的状态转移概率取决于当前状态,即转移到下一个状态的概率仅与当前状态有关。

  4. 无向图表示: 通常可以使用无向图来表示生灭过程,其中每个状态对应一个节点,而状态之间的转移由边表示。边上的权重表示从一个状态转移到另一个状态的概率。

数学上,生灭过程的特点可以用转移概率来描述。设 Pi,i+1​ 表示从状态 i 转移到状态 i+1 的概率,而 Pi,i−1​ 表示从状态 i 转移到状态 i−1 的概率。则生灭过程的转移概率可以表示为:

P(Xn+1​=i+1∣Xn​=i)=Pi,i+1​

P(Xn+1​=i−1∣Xn​=i)=Pi,i−1​

P(Xn+1​=i∣Xn​=i)=1−Pi,i+1​−Pi,i−1​

生灭过程的分析涉及到马尔可夫链的理论和技巧,可以通过平衡方程、极限定理等方法来研究其性质。


总结

马尔可夫过程在数学、物理、生物学、经济学和工程学等各个领域都有广泛的应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1450473.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

找不到目标和方向,怎么办?

现代社会里&#xff0c;许多人常见的症状&#xff0c;就是「空心病」。 什么是空心病呢&#xff1f;类似这样&#xff1a; 我知道要有目标&#xff0c;但我就是不知道想做什么&#xff0c;感觉对一切事物都提不起兴趣&#xff0c;没有动力&#xff0c;怎么办&#xff1f; 这个…

Mysql第一关之常规用法

简介 介绍Mysql常规概念&#xff0c;用法。包括DDL、DCL、DML、DQL&#xff0c;关键字、分组、连表、函数、排序、分页等。 一、 SQL DCMQ&#xff0c;分别代表DDL、DCL、DML、DQL。 模糊简记为DCMQ&#xff0c;看起来像一个消息队列。 D&#xff1a;Definition 定义语句 M…

[UI5 常用控件] 09.IconTabBar,IconTabHeader,TabContainer

文章目录 前言1. IconTabBar1.1 简介1.2 基本结构1.3 用法1.3.1 颜色&#xff0c;拖放&#xff0c;溢出1.3.2 Icons Only , Inner Contents1.3.3 showAll,Count,key,IconTabSeparator 1.3.4 Only Text1.3.5 headerMode-Inline1.3.6 design,IconTabSeparator-icon1.3.7 DensityM…

当下时代,什么样的人赚钱最容易

如果你问&#xff0c;今天什么样的人赚钱最容易 答案是那些有大量粉丝、有个人IP的人 微信里面&#xff0c;要获取到流量&#xff0c;就必须有粉丝&#xff0c;而在抖音、快手里面&#xff0c;即使你没有任何粉丝 只要能输出平台和用户喜欢的优质内容&#xff0c;一样可以获取巨…

一条 SQL 查询语句是如何执行的

MySQL 的基本架构示意图 大体来说&#xff0c;MySQL 可以分为 Server 层和存储引擎层两部分 Server 层包括连接器、查询缓存、分析器、优化器、执行器等&#xff0c;涵盖 MySQL 的大多数核心服务功能&#xff0c;以及所有的内置函数&#xff08;如日期、时间、数学和加密函数等…

基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 ECG信号的特点与噪声 4.2 FPGA在ECG信号处理中的应用 4.3 ECG信号滤波原理 4.4 心率计算原理 4.5 FPGA在ECG信号处理中的优势 5.算法完整程序工程 1.算法运行效果图预览 其RTL结构如…

探索设计模式的魅力:创建型设计模式的比较与决策

设计模式专栏&#xff1a;http://t.csdnimg.cn/U54zu 目录 一、设计模式概览 1.1 创建型模式 二、比较创建型设计模式 1.1 适用场景典型用例 1.2 关键要素与差异对比 1.3 结构图 三、模式选择指南 3.1 场景分析 3.2 决策流程图 四、结语 4.1 优势 4.2 考量因素 一、…

【Java多线程】Thread类的基本用法

目录 Thread类 1、创建线程 1.1、继承 Thread&#xff0c;重写run 1.2、实现 Runnable&#xff0c;重写run 1.3、使用匿名内部类&#xff0c;继承 Thread&#xff0c;重写run 1.4、使用匿名内部类&#xff0c;实现 Runnable&#xff0c;重写run 1.5、使用 lambda 表达式…

问题:总离差平方和为变形观测值与变形观测值的平均值之差的平方和。() #微信#其他

问题&#xff1a;总离差平方和为变形观测值与变形观测值的平均值之差的平方和。&#xff08;) 是 否 参考答案如图所示

html的表格标签

html的表格标签 table标签:表示整个表格tr:表示表格的一行td:表示一个单元格th:表示表头单元格.会居中加粗thead:表格的头部区域 (注意和th区分,范围是比th要大的).tbody:表格得到主体区域. table包含tr , tr包含td或者th. 表格标签有一些属性&#xff0c;可以用于设置大小边…

ChatGPT高效提问—prompt实践(健康助手)

ChatGPT高效提问—prompt实践&#xff08;健康助手&#xff09; ​ 随着社会经济的发展&#xff0c;人们的生活条件不断改善&#xff0c;人们对身体健康也日益重现。让ChatGPT作为健康助手也是一件不错的事。开始之前&#xff0c;还是老样子&#xff0c;先设置角色。 ​ 输入…

Typora+PicGO+腾讯云COS做图床教程

文章目录 Typora&#xff0b;PicGO&#xff0b;腾讯云COS做图床教程一、为什么使用图床二、Typora、PicGO和腾讯云COS介绍三、下载Typora和PicGOTyporaPicGO 四、配置Typora、PicGO和腾讯云COS腾讯云COS配置PicGO配置Typora配置 Typora&#xff0b;PicGO&#xff0b;腾讯云COS做…

【MySQL】操作库 —— 表的操作 -- 详解

一、增加表 1、创建表 mysql> create database [if not exists] table_name ( -> field1 datatype, -> field2 datatype, -> field3 datatype -> ) character set 字符集 collate 校验规则 engine 存储引擎; 注意 &#xff1a;最后一行也可以写成&#x…

中国电子学会2023年12月份青少年软件编程Scratch图形化等级考试试卷一级真题(含答案)

2023-12 Scratch一级真题 分数&#xff1a;100 题数&#xff1a;37 测试时长&#xff1a;60min 一、单选题(共25题&#xff0c;共50分) 1.观察下列每个圆形中的四个数&#xff0c;找出规律&#xff0c;在括号里填上适当的数&#xff1f;&#xff08;C&#xff09;&#xf…

C语言操作符练习

练习开胃菜 曾经有一道面试题&#xff0c;要求不能创建临时变量&#xff08;第三个变量&#xff09;&#xff0c;实现两个数的交换。 这道题如果没有前半句的修饰&#xff0c;就只是简单的一道基础题。 法一&#xff1a; #include <stdio.h> int main() {int a 0;i…

网络安全威胁,如何解决缓冲区溢出攻击

目录 一、什么是网络安全 二、什么是缓冲区 三、缓冲区溢出 四、缓冲区溢出攻击的类型 一、什么是网络安全 网络安全&#xff08;Network Security&#xff09;指的是保护计算机网络及其相关设备、系统和数据免受未经授权访问、破坏、篡改、窃取或滥用的威胁和攻击。随着网…

生成式AI相关知识记录

一、简述开发步骤 开发一个生成式AI模型通常涉及以下步骤&#xff1a; 1. **需求分析与目标设定**&#xff1a; - 确定应用领域和目标&#xff0c;例如文本生成、图像生成、音乐创作等。 - 分析应用场景的具体需求&#xff0c;包括输出质量、速度、多样性、可控性等因素…

Codeforces Round 926 (Div. 2)

Codeforces Round 926 (Div. 2) Codeforces Round 926 (Div. 2) A. Sasha and the Beautiful Array 题意&#xff1a;略。 思路&#xff1a;从小到大排序&#xff0c;取前后差和。 AC code&#xff1a; void solve() {int ans 0;cin >> n;for (int i 1; i < n…

云原生之容器编排-Docker Swarm

1. 前言 上一篇我们讲到Docker Compose可以定义和运行多容器应用程序&#xff0c;用一个YAML配置文件来声明式管理服务&#xff0c;在一台安装了Docker engine的Linux系统上可以很好的工作&#xff0c;但是现实中不可能只有一台Linux系统&#xff0c;一台Linux系统不可能有足够…

算法详解(力扣141——环形链表系列)

博主ID&#xff1a;代码小豪 文章目录 环形链表环形链表的性质分析快慢指针法指针的追及相遇问题 环形链表&#xff08;2&#xff09; 环形链表 先来看看环形链表的原题&#xff1a; 中间的部分叙述有点繁杂&#xff0c;简单来概括就是&#xff0c;假如有一个节点&#xff0c…