【AIGC】Stable Diffusion的采样器入门

news2025/1/17 0:07:16

在这里插入图片描述

在 Stable Diffusion 中,采样器(Sampler)是指用于生成图像的一种技术或方法,它决定了模型如何从潜在空间中抽样并生成图像。采样器在生成图像的过程中起着重要作用,影响着生成图像的多样性、质量和创造性。以下是对 Stable Diffusion 采样器的详细解释:

潜在空间抽样:
采样器负责从潜在空间中抽样,并将这些样本输入到生成器中以生成图像。潜在空间是一个高维向量空间,其中每个向量代表一个潜在的图像表示。通过从潜在空间中抽样不同的向量,采样器可以生成不同的图像样本。

采样策略:
采样器决定了从潜在空间中抽样的方式和策略。不同的采样策略可能会导致生成图像的多样性和质量不同。例如,随机采样器可以随机地从潜在空间中抽取样本,而插值采样器可以在潜在空间中进行线性插值以生成连续变化的图像。

温度参数
一些采样器可能会引入温度参数,用于控制采样过程中的随机性。通过调整温度参数,可以影响生成图像的多样性和创造性。较高的温度值会增加随机性,导致生成更多样化的图像,而较低的温度值则会减少随机性,使生成图像更加稳定。

采样方法:
采样器还可以采用不同的方法来选择从潜在空间中抽样的样本。常见的方法包括随机采样、插值采样、聚类采样等。每种方法都有其优缺点,适用于不同的应用场景和需求。
在这里插入图片描述
Stable Diffusion 的 Web UI 提供了大量的采样器供用户选择,这些采样器基于不同的算法、数学模型或生成模型,具有不同的特点:

Euler A 和 Euler:这两种采样器基于 Euler 方法,是一种简单而直接的数值积分方法。它们在计算速度上较快,但可能会产生较大的误差,导致生成图像的质量较低。

Heun:Heun 采样器是一种改进的数值积分方法,具有较高的数值精度和稳定性。它通常能够生成较高质量、较清晰的图像,但可能稍微增加计算成本。

DDIM:DDIM(Denoising Diffusion Implicit Model)采样器基于去噪扩散过程,通过迭代去噪来生成逼真的图像。它可能具有较高的图像质量和清晰度,但计算成本较高。

DPM++ 2M Karras 和 DPM++ SDE Karras:这些采样器基于 Karras 或 SDE 模型,通常用于生成高质量、逼真的图像。它们可能结合了复杂的生成模型和算法,适用于要求较高的图像生成任务。

DPM++ 2M SDE Exponential:这是基于指数型随机微分方程(SDE)的采样器,用于控制图像生成过程中的噪声和多样性。它可能提供了一种不同的生成策略,可用于生成具有特定特征的图像。

PLMS:PLMS(Power-Law Mean Squared)采样器是一种改进的隐式模型,用于生成图像。它可能具有更好的数值稳定性和收敛性,适用于生成质量较高的图像。

UniPC:UniPC 采样器是一种基于单个预测器的采样器,可能具有较低的计算成本和较快的生成速度,但可能会牺牲一些图像质量。

Restart:Restart 采样器可能使用了一种特殊的重新启动机制,用于提高生成过程的稳定性和收敛性。

DPM adaptive:这是一种自适应的采样器,可能根据生成过程中的反馈信息动态调整参数和策略,以优化生成结果。

##############################################################################################
经典ODE求解器
Euler采样器:欧拉采样方法。
Heun采样器:欧拉的一个更准确但是较慢的版本。
LMS采样器:线性多步法,与欧拉采样器速度相仿,但是更准确。

祖先采样器
名称中带有a标识的采样器表示这一类采样器是祖先采样器。这一类采样器在每个采样步骤中都会向图像添加噪声,采样结果具有一定的随机性。
Euler a
DPM2 a
DPM++ 2S a
DPM++ 2S a Karras
由于这一类采样器的特性,图像不会收敛。因此为了保证重现性,例如在通过多帧组合构建动画时,应当尽量避免采用具有随机性的采样器。需要注意的是,部分采样器的名字中虽然没有明确标识属于祖先采样器,但也属于随机采样器。如果希望生成的图像具有细微的变化,推荐使用variation seed进行调整。

DDIM与PLMS(已过时,不再使用
DDIM(去噪扩散隐式模型)和PLMS(伪线性多步方法)是伴随Stable Diffusion v1提出的采样方法,DDIM也是最早被用于扩散模型的采样器。PLMS是DDIM的一种更快的替代方案。当前这两种采样方法都不再广泛使用。

DPM与DPM++
DPM(扩散概率模型求解器)这一系列的采样器于2022年发布,代表了具有类似体系结构的求解器系列。

由于DPM会自适应调整步长,不能保证在约定的采样步骤内完成任务,整体速度可能会比较慢。对Tag的利用率较高,在使用时建议适当放大采样的步骤数以获得较好的效果。

DPM++是对DPM的改进,DPM2采用二阶方法,其结果更准确,但是相应的也会更慢一些。

UniPC
UniPC(统一预测校正器),一种可以在5-10个步骤中实现高质量图像生成的方法。

采样器的选择推荐使用网上另一个大佬的结论

1、如果只是想得到一些较为简单的结果,选用欧拉(Eular)或者Heun,并可适当减少Heun的步骤数以减少时间

2、对于侧重于速度、融合、新颖且质量不错的结果,建议选择:
DPM++ 2M Karras, Step Range:20-30
UniPc, Step Range: 20-30

3、期望得到高质量的图像,且不关心图像是否收敛:
DPM ++ SDE Karras, Step Range:8-12
DDIM, Step Range:10-15

4、如果期望得到稳定、可重现的图像,避免采用任何祖先采样器

图像收敛通常指的是生成的图像在训练或优化过程中逐渐变得稳定和一致,不再发生显著变化的过程。在图像生成任务中,收敛是指生成模型学习到的图像分布逼近真实图像分布的过程。在 Stable Diffusion或其他图像生成模型中,图像收敛通常意味着生成的图像质量和逼真度逐渐提高,同时图像的多样性和噪声减少。这可能是通过调整模型参数、增加训练数据、改进生成算法等方式实现的。当生成的图像在训练过程中达到稳定状态,不再发生显著的变化时,我们可以说模型已经收敛。 图像收敛是图像生成任务中的一个重要目标,它表示模型学习到了数据的重要特征和分布规律,并能够生成与真实数据相似的图像。在使用 Stable Diffusion 或其他图像生成模型时,了解和监控图像的收敛过程是评估模型性能和训练进度的重要指标之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1450245.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WebStorm | 如何修改webstorm中新建html文件默认生成模板中title的初始值

在近期的JS的学习中&#xff0c;使用webstorm&#xff0c;总是要先新建一个html文件&#xff0c;然后再到里面书写<script>标签&#xff0c;真是麻烦&#xff0c;而且标题也是默认的title&#xff0c;想改成文件名还总是需要手动去改 经过小小的研究&#xff0c;找到了修…

问题:如果要编辑建好的建筑和空间,需要在分级按钮( )和细分操作按钮楼层下,才能选中建筑物和空间; #微信#媒体#其他

问题&#xff1a;如果要编辑建好的建筑和空间&#xff0c;需要在分级按钮&#xff08; &#xff09;和细分操作按钮楼层下&#xff0c;才能选中建筑物和空间&#xff1b; A、楼层 B、规划图 C、全景 D、建筑物 参考答案如图所示

【单总线与DS18B20总结和代码实现】

单总线介绍与总结 单总线介绍单总线时序图DS18B20的操作流程代码 读温度代码思路代码实现 单总线介绍 单总线应用案例&#xff1a;Ds18B20、温湿度传感器用到的就是这个&#xff0c;这里Ds18B20从当的角色是从机部分&#xff0c;而开发板充当的部分人是主机部分。 Ds18B20内部结…

红队打靶练习:HACK ME PLEASE: 1

信息收集 1、arp ┌──(root㉿ru)-[~/kali] └─# arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:69:c7:bf, IPv4: 192.168.61.128 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192.168.61.2 00:50:56:f0:df:20 …

ubuntu22.04@laptop OpenCV Get Started: 010_blob_detection

ubuntu22.04laptop OpenCV Get Started: 010_blob_detection 1. 源由2. blob应用Demo2.1 C应用Demo2.2 Python应用Demo 3. 重点分析3.1 Threshold3.2 Area3.3 Circularity3.4 Convexity3.5 Inertia Ratio 4. 总结5. 参考资料6. 补充 1. 源由 Blob是图像中的一组连接像素&#…

Git 初学

目录 一、需求的产生 二、版本控制系统理解 1. 认识版本控制系统 2. 版本控制系统分类 &#xff08;1&#xff09;集中式版本控制系统 缺点&#xff1a; &#xff08;2&#xff09;分布式版本控制系统 三、初识 git 四、git 的使用 例&#xff1a;将 “ OLED文件夹 ”…

STM32物联网(ESP-01S模块及STM32和ESP-01S通信方式介绍)

文章目录 前言一、ESP-01S模块介绍二、STM32和ESP-01S通信方式介绍三、什么是AT指令四、创建基础工程总结 前言 本篇文章我们开始正式进入STM32物联网的专栏&#xff0c;在这个专栏中将会带大家学习使用STM32进行联网&#xff0c;联网模块的话主要就是使用到了ESP-01S WIFI模块…

嵌入式STM32 单片机 GPIO 的工作原理详解

STM32的 GPIO 介绍 GPIO 是通用输入/输出端口的简称&#xff0c;是 STM32 可控制的引脚。GPIO 的引脚与外部硬件设备连接&#xff0c;可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。 以 STM32F103ZET6 芯片为例子&#xff0c;该芯片共有 144 脚芯片&#xff0c…

[word] word技巧分享_word自动编号的标题 #知识分享#知识分享#其他

word技巧分享_word自动编号的标题 日常办公&#xff0c;我们时时都在使用 word 软件。 word 软件内容的组织是通过一节一节的标题进行的。 我们常常需要处理的是下图一样的章节目录

计算机设计大赛 深度学习OCR中文识别 - opencv python

文章目录 0 前言1 课题背景2 实现效果3 文本区域检测网络-CTPN4 文本识别网络-CRNN5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习OCR中文识别系统 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;…

挑战杯 python图像检索系统设计与实现

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python图像检索系统设计与实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&#xff0c…

【C深度解剖】取模与取余

简介&#xff1a;本系列博客为C深度解剖系列内容&#xff0c;以某个点为中心进行相关详细拓展 适宜人群&#xff1a;已大体了解C语法同学 作者留言&#xff1a;本博客相关内容如需转载请注明出处&#xff0c;本人学疏才浅&#xff0c;难免存在些许错误&#xff0c;望留言指正 作…

AJAX——接口文档

1 接口文档 接口文档&#xff1a;描述接口的文章 接口&#xff1a;使用AJAX和服务器通讯时&#xff0c;使用的URL&#xff0c;请求方法&#xff0c;以及参数 传送门&#xff1a;AJAX阶段接口文档 <!DOCTYPE html> <html lang"en"><head><meta c…

【论文精读】GPT2

摘要 在单一领域数据集上训练单一任务的模型是当前系统普遍缺乏泛化能力的主要原因&#xff0c;要想使用当前的架构构建出稳健的系统&#xff0c;可能需要多任务学习。但多任务需要多数据集&#xff0c;而继续扩大数据集和目标设计的规模是个难以处理的问题&#xff0c;所以只能…

【AIGC】Stable Diffusion的ControlNet参数入门

Stable Diffusion 中的 ControlNet 是一种用于控制图像生成过程的技术&#xff0c;它可以指导模型生成特定风格、内容或属性的图像。下面是关于 ControlNet 的界面参数的详细解释&#xff1a; 低显存模式 是一种在深度学习任务中用于处理显存受限设备的技术。在这种模式下&am…

嵌入式I2C 信号线为何加上拉电阻(图文并茂)

IIC 是一个两线串行通信总线&#xff0c;包含一个 SCL 信号和 SDA 信号&#xff0c;SCL 是时钟信号&#xff0c;从主设备发出&#xff0c;SDA 是数据信号&#xff0c;是一个双向的&#xff0c;设备发送数据和接收数据都是通过 SDA 信号。 在设计 IIC 信号电路的时候我们会在 SC…

84 CTF夺旗-PHP弱类型异或取反序列化RCE

目录 案例1&#xff1a;PHP-相关总结知识点-后期复现案例2&#xff1a;PHP-弱类型对比绕过测试-常考点案例3&#xff1a;PHP-正则preg_match绕过-常考点案例4&#xff1a;PHP-命令执行RCE变异绕过-常考点案例5&#xff1a;PHP-反序列化考题分析构造复现-常考点涉及资源&#xf…

机器学习---HMM前向、后向和维特比算法的计算

1. HMM import numpy as np# In[15]:class HiddenMarkov:def forward(self, Q, V, A, B, O, PI): # 使用前向算法N len(Q) # 状态序列的大小M len(O) # 观测序列的大小alphas np.zeros((N, M)) # alpha值T M # 有几个时刻&#xff0c;有几个观测序列&#xff0c;就有…

大学建筑专业的搜题软件?大学搜题工具中的高级搜索功能有哪些? #学习方法#微信#经验分享

学习和考试是大学生生活中不可避免的一部分&#xff0c;而在这个信息爆炸的时代&#xff0c;如何快速有效地获取学习资源和解答问题成为了大学生们共同面临的难题。为了解决这个问题&#xff0c;搜题和学习软件应运而生。今天&#xff0c;我将为大家介绍几款备受大学生青睐的搜…

[Vue warn]: Duplicate keys detected: ‘1‘. This may cause an update error.

[Vue warn]: Duplicate keys detected: ‘1‘. This may cause an update error.——> Vue报错&#xff0c;key关键字不唯一&#xff1a; 解决办法&#xff1a;修改一下重复的id值&#xff01;&#xff01;&#xff01;