计算机设计大赛 深度学习OCR中文识别 - opencv python

news2024/11/29 5:27:53

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 文本区域检测网络-CTPN
  • 4 文本识别网络-CRNN
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习OCR中文识别系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。

高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。

本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。

2 实现效果

公式检测
在这里插入图片描述
纯文字识别

在这里插入图片描述

3 文本区域检测网络-CTPN

对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。

简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。
在这里插入图片描述
相关代码

def main(argv):
    pycaffe_dir = os.path.dirname(__file__)

    parser = argparse.ArgumentParser()
    # Required arguments: input and output.
    parser.add_argument(
        "input_file",
        help="Input txt/csv filename. If .txt, must be list of filenames.\
        If .csv, must be comma-separated file with header\
        'filename, xmin, ymin, xmax, ymax'"
    )
    parser.add_argument(
        "output_file",
        help="Output h5/csv filename. Format depends on extension."
    )
    # Optional arguments.
    parser.add_argument(
        "--model_def",
        default=os.path.join(pycaffe_dir,
                "../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),
        help="Model definition file."
    )
    parser.add_argument(
        "--pretrained_model",
        default=os.path.join(pycaffe_dir,
                "../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),
        help="Trained model weights file."
    )
    parser.add_argument(
        "--crop_mode",
        default="selective_search",
        choices=CROP_MODES,
        help="How to generate windows for detection."
    )
    parser.add_argument(
        "--gpu",
        action='store_true',
        help="Switch for gpu computation."
    )
    parser.add_argument(
        "--mean_file",
        default=os.path.join(pycaffe_dir,
                             'caffe/imagenet/ilsvrc_2012_mean.npy'),
        help="Data set image mean of H x W x K dimensions (numpy array). " +
             "Set to '' for no mean subtraction."
    )
    parser.add_argument(
        "--input_scale",
        type=float,
        help="Multiply input features by this scale to finish preprocessing."
    )
    parser.add_argument(
        "--raw_scale",
        type=float,
        default=255.0,
        help="Multiply raw input by this scale before preprocessing."
    )
    parser.add_argument(
        "--channel_swap",
        default='2,1,0',
        help="Order to permute input channels. The default converts " +
             "RGB -> BGR since BGR is the Caffe default by way of OpenCV."

    )
    parser.add_argument(
        "--context_pad",
        type=int,
        default='16',
        help="Amount of surrounding context to collect in input window."
    )
    args = parser.parse_args()

    mean, channel_swap = None, None
    if args.mean_file:
        mean = np.load(args.mean_file)
        if mean.shape[1:] != (1, 1):
            mean = mean.mean(1).mean(1)
    if args.channel_swap:
        channel_swap = [int(s) for s in args.channel_swap.split(',')]

    if args.gpu:
        caffe.set_mode_gpu()
        print("GPU mode")
    else:
        caffe.set_mode_cpu()
        print("CPU mode")

    # Make detector.
    detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,
            input_scale=args.input_scale, raw_scale=args.raw_scale,
            channel_swap=channel_swap,
            context_pad=args.context_pad)

    # Load input.
    t = time.time()
    print("Loading input...")
    if args.input_file.lower().endswith('txt'):
        with open(args.input_file) as f:
            inputs = [_.strip() for _ in f.readlines()]
    elif args.input_file.lower().endswith('csv'):
        inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})
        inputs.set_index('filename', inplace=True)
    else:
        raise Exception("Unknown input file type: not in txt or csv.")

    # Detect.
    if args.crop_mode == 'list':
        # Unpack sequence of (image filename, windows).
        images_windows = [
            (ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)
            for ix in inputs.index.unique()
        ]
        detections = detector.detect_windows(images_windows)
    else:
        detections = detector.detect_selective_search(inputs)
    print("Processed {} windows in {:.3f} s.".format(len(detections),
                                                     time.time() - t))

    # Collect into dataframe with labeled fields.
    df = pd.DataFrame(detections)
    df.set_index('filename', inplace=True)
    df[COORD_COLS] = pd.DataFrame(
        data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)
    del(df['window'])

    # Save results.
    t = time.time()
    if args.output_file.lower().endswith('csv'):
        # csv
        # Enumerate the class probabilities.
        class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]
        df[class_cols] = pd.DataFrame(
            data=np.vstack(df['feat']), index=df.index, columns=class_cols)
        df.to_csv(args.output_file, cols=COORD_COLS + class_cols)
    else:
        # h5
        df.to_hdf(args.output_file, 'df', mode='w')
    print("Saved to {} in {:.3f} s.".format(args.output_file,
                                            time.time() - t))

CTPN网络结构
在这里插入图片描述

4 文本识别网络-CRNN

CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用

图来自文章:一文读懂CRNN+CTC文字识别

整个CRNN网络结构包含三部分,从下到上依次为:

  1. CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
  2. RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
  3. CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。

CNN
卷积层的结构图:
在这里插入图片描述

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。

CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。

输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。

CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。

Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。

在这里插入图片描述

现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。

由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。

如下图所示:
在这里插入图片描述

这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。

RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。

LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。

这里采用的是两层各256单元的双向 LSTM 网络:
在这里插入图片描述

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分

我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。

因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。

如下图所示:
在这里插入图片描述

然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。

端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。

相关代码

    def inference(self, inputdata, name, reuse=False):
        """
        Main routine to construct the network
        :param inputdata:
        :param name:
        :param reuse:
        :return:
        """
        with tf.variable_scope(name_or_scope=name, reuse=reuse):
            # centerlized data
            inputdata = tf.divide(inputdata, 255.0)
            #1.特征提取阶段
            # first apply the cnn feature extraction stage
            cnn_out = self._feature_sequence_extraction(
                inputdata=inputdata, name='feature_extraction_module'
            )
            #2.第二步,  batch*1*25*512  变成 batch * 25 * 512
            # second apply the map to sequence stage
            sequence = self._map_to_sequence(
                inputdata=cnn_out, name='map_to_sequence_module'
            )
            #第三步,应用序列标签阶段
            # third apply the sequence label stage
            # net_out width, batch, n_classes
            # raw_pred   width, batch, 1
            net_out, raw_pred = self._sequence_label(
                inputdata=sequence, name='sequence_rnn_module'
            )

        return net_out

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1450230.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

挑战杯 python图像检索系统设计与实现

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 python图像检索系统设计与实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分创新点:4分 该项目较为新颖&#xff0c…

【C深度解剖】取模与取余

简介:本系列博客为C深度解剖系列内容,以某个点为中心进行相关详细拓展 适宜人群:已大体了解C语法同学 作者留言:本博客相关内容如需转载请注明出处,本人学疏才浅,难免存在些许错误,望留言指正 作…

AJAX——接口文档

1 接口文档 接口文档&#xff1a;描述接口的文章 接口&#xff1a;使用AJAX和服务器通讯时&#xff0c;使用的URL&#xff0c;请求方法&#xff0c;以及参数 传送门&#xff1a;AJAX阶段接口文档 <!DOCTYPE html> <html lang"en"><head><meta c…

【论文精读】GPT2

摘要 在单一领域数据集上训练单一任务的模型是当前系统普遍缺乏泛化能力的主要原因&#xff0c;要想使用当前的架构构建出稳健的系统&#xff0c;可能需要多任务学习。但多任务需要多数据集&#xff0c;而继续扩大数据集和目标设计的规模是个难以处理的问题&#xff0c;所以只能…

【AIGC】Stable Diffusion的ControlNet参数入门

Stable Diffusion 中的 ControlNet 是一种用于控制图像生成过程的技术&#xff0c;它可以指导模型生成特定风格、内容或属性的图像。下面是关于 ControlNet 的界面参数的详细解释&#xff1a; 低显存模式 是一种在深度学习任务中用于处理显存受限设备的技术。在这种模式下&am…

嵌入式I2C 信号线为何加上拉电阻(图文并茂)

IIC 是一个两线串行通信总线&#xff0c;包含一个 SCL 信号和 SDA 信号&#xff0c;SCL 是时钟信号&#xff0c;从主设备发出&#xff0c;SDA 是数据信号&#xff0c;是一个双向的&#xff0c;设备发送数据和接收数据都是通过 SDA 信号。 在设计 IIC 信号电路的时候我们会在 SC…

84 CTF夺旗-PHP弱类型异或取反序列化RCE

目录 案例1&#xff1a;PHP-相关总结知识点-后期复现案例2&#xff1a;PHP-弱类型对比绕过测试-常考点案例3&#xff1a;PHP-正则preg_match绕过-常考点案例4&#xff1a;PHP-命令执行RCE变异绕过-常考点案例5&#xff1a;PHP-反序列化考题分析构造复现-常考点涉及资源&#xf…

机器学习---HMM前向、后向和维特比算法的计算

1. HMM import numpy as np# In[15]:class HiddenMarkov:def forward(self, Q, V, A, B, O, PI): # 使用前向算法N len(Q) # 状态序列的大小M len(O) # 观测序列的大小alphas np.zeros((N, M)) # alpha值T M # 有几个时刻&#xff0c;有几个观测序列&#xff0c;就有…

大学建筑专业的搜题软件?大学搜题工具中的高级搜索功能有哪些? #学习方法#微信#经验分享

学习和考试是大学生生活中不可避免的一部分&#xff0c;而在这个信息爆炸的时代&#xff0c;如何快速有效地获取学习资源和解答问题成为了大学生们共同面临的难题。为了解决这个问题&#xff0c;搜题和学习软件应运而生。今天&#xff0c;我将为大家介绍几款备受大学生青睐的搜…

[Vue warn]: Duplicate keys detected: ‘1‘. This may cause an update error.

[Vue warn]: Duplicate keys detected: ‘1‘. This may cause an update error.——> Vue报错&#xff0c;key关键字不唯一&#xff1a; 解决办法&#xff1a;修改一下重复的id值&#xff01;&#xff01;&#xff01;

安卓自定义画板

包含功能&#xff1a; 包含 获取当前画板的截图、设置画笔样式、获取画笔样式、设置画笔宽度、获取画笔宽度、设置画笔颜色、获取画笔颜色、加载图片、获取图片位图对象、设置图片位图对象&#xff0c;并在画布上绘制图片、撤销上一步操作、重做上一步撤销的操作、清空所有绘图…

.net和jar包windows服务部署

一.NetCore 1.创建启动脚本run_instal.bat,例如程序文件为ApiDoc.exe set serviceName"Apidoc Web 01" set serviceFilePath%~dp0ApiDoc.exe set serviceDescription"ApiDoc 动态接口服务 web 01"sc create %serviceName% BinPath%serviceFilePath% sc c…

TiDB 在医疗保障信息平台的应用实践

文章介绍了 TiDB 在医疗保障信息平台中的应用。东软医保云应用管理平台通过与 TiDB 联合&#xff0c;成功满足了医疗保障业务中高并发、实时性和复杂查询的要求。在某地市医疗保障信息平台的实践中&#xff0c;TiDB 分布式数据库有效实现了在线交易和实时分析服务&#xff0c;日…

5种风格非常经典的免费wordpress主题

免费wordpress主题下载 高端大气上档次的wordpress主题&#xff0c;也可以是免费的&#xff0c;可以在线免费下载。 https://www.wpniu.com/themes/288.html wordpress免费主题 高端大气的wordpress免费主题&#xff0c;LOGO在顶部左侧&#xff0c;导航菜单在顶部右侧。 ht…

2007-2021年上市公司内控信息披露指数/上市公司内部控制信息披露指数数据

2007-2021年上市公司内控信息披露指数/上市公司内部控制信息披露指数数据 1、时间&#xff1a;2007-2021年 2、范围&#xff1a;上市公司 3、指标&#xff1a;证券代码、证券简称、辖区、证监会行业、申万行业、内部环境、风险评估、控制活动、信息与沟通、内部监督、内部控…

使用人工智能增强人类能力的开源框架

主要特征 创建它是为了让人类能够轻松地通过人工智能增强自己。我认为目前人们使用人工智能太困难了。我认为工具太多&#xff0c;网站太多&#xff0c;而将问题与解决方案结合起来的实际用例太少。Fabric 是解决这些问题的一种方法。 它的最佳功能是它的模式&#xff0c;即使…

【MySQL/Redis】如何实现缓存一致

目录 不实用的方案 1. 先写 MySQL , 再写 Redis 2. 先写 Redis &#xff0c; 再写MySQL 3. 先删 Redis&#xff0c;再写 MySQL 实用的方案 1. 先删 Redis&#xff0c;再写 MySQL, 再删 Redis 2. 先写 MySQL , 再删 Redis 3. 先写MySQL&#xff0c;通过BinLog&#xff0…

Redis面试题整理(持续更新)

1. 缓存穿透&#xff1f; 缓存穿透是指查询一个一定不存在的数据&#xff0c;如果从存储层查不到数据则不写入缓存&#xff0c;这将导致这个不存在的数据每次请求都要到 DB 去查询&#xff0c;可能导致DB挂掉&#xff0c;这种情况大概率是遭到了攻击。 解决方案&#xff1a; …

MySQL 基础知识(三)之数据库操作

目录 1 显示当前时间、用户名、数据库版本 2 查看已有数据库 3 创建数据库 4 使用数据库 5 查看当前使用的数据库 6 查看当前数据库信息 7 查看数据库编码 8 修改数据库信息 9 删除数据库 10 查看最大连接数 11 查看数据库当前连接数&#xff0c;并发数 12 查看数据…

ch5-homework-基于LMDeploy的大模型量化部署实践

ch5-homework-基于LMDeploy的大模型量化部署实践 主要内容教程复现环境配置服务部署模型转换在线转换离线转换 TurboMind 推理命令行本地对话TurboMind推理API服务网页 Demo 演示TurboMind 服务作为后端TurboMind 推理作为后端 TurboMind 推理 Python 代码集成最佳实践方案实践…