代码解读:Stable Video Diffusion 中对运动程度的控制

news2024/11/30 4:56:55

Diffusion Models视频生成-博客汇总

前言:在SVD中,对运动的控制可以分成对镜头运动的控制和对内容运动的控制,这篇博客详细通过代码讲解如何对内容运动的控制。

目录

方法一:motion_bucket_id

简述

代码解读

方法二:Attention Scaling

简述

代码解读


方法一:motion_bucket_id

简述

描述物体的运动程度,在pipeline中可以直接指定这个参数,默认的参数是127,一般可以设定在[0,300]之间。

数值越高则代表画面中运动程度越高。

详细的实验效果可以参考:https://www.reddit.com/r/StableDiffusion/comments/183mg95/stable_vide_diffusion_motion_bucket_id_comparison/

代码解读

在svd预训练的时候已经将motion_bucket_id加入到模型中,加入到方法是和fps、noise strength组成一个列表,加入到timesteps中。

        # 5. Get Added Time IDs
        added_time_ids = self._get_add_time_ids(
            fps,
            motion_bucket_id,
            noise_aug_strength,
            image_embeddings.dtype,
            batch_size,
            num_videos_per_prompt,
            self.do_classifier_free_guidance,
        )
    def _get_add_time_ids(
        self,
        fps,
        motion_bucket_id,
        noise_aug_strength,
        dtype,
        batch_size,
        num_videos_per_prompt,
        do_classifier_free_guidance,
    ):
        add_time_ids = [fps, motion_bucket_id, noise_aug_strength]

        passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features

        if expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
            )

        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)

        if do_classifier_free_guidance:
            add_time_ids = torch.cat([add_time_ids, add_time_ids])

        return add_time_ids

方法二:Attention Scaling

简述

这个在SVD的diffusers代码中没有暴露出接口调整。Attention Scaling越大,画面中的运动程度就越高。

attention scaling指的是在计算attention的时候的sqrt(1/d):

参考博客:Motion Control with Attention Scaling

代码解读

diffusers中所有Attention计算都在class Attention中,其中scale_qk是暴露出来的参数,我们最方便的方法是直接在源码中更改:

self.scale = dim_head**-0.5 if self.scale_qk else 1.0

完整代码如下:

@maybe_allow_in_graph
class Attention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (`int`):
            The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
        heads (`int`,  *optional*, defaults to 8):
            The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
        upcast_attention (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the attention computation to `float32`.
        upcast_softmax (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the softmax computation to `float32`.
        cross_attention_norm (`str`, *optional*, defaults to `None`):
            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
        cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups to use for the group norm in the cross attention.
        added_kv_proj_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the added key and value projections. If `None`, no projection is used.
        norm_num_groups (`int`, *optional*, defaults to `None`):
            The number of groups to use for the group norm in the attention.
        spatial_norm_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the spatial normalization.
        out_bias (`bool`, *optional*, defaults to `True`):
            Set to `True` to use a bias in the output linear layer.
        scale_qk (`bool`, *optional*, defaults to `True`):
            Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
        only_cross_attention (`bool`, *optional*, defaults to `False`):
            Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
            `added_kv_proj_dim` is not `None`.
        eps (`float`, *optional*, defaults to 1e-5):
            An additional value added to the denominator in group normalization that is used for numerical stability.
        rescale_output_factor (`float`, *optional*, defaults to 1.0):
            A factor to rescale the output by dividing it with this value.
        residual_connection (`bool`, *optional*, defaults to `False`):
            Set to `True` to add the residual connection to the output.
        _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
            Set to `True` if the attention block is loaded from a deprecated state dict.
        processor (`AttnProcessor`, *optional*, defaults to `None`):
            The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
            `AttnProcessor` otherwise.
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias: bool = False,
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
        cross_attention_norm: Optional[str] = None,
        cross_attention_norm_num_groups: int = 32,
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
        spatial_norm_dim: Optional[int] = None,
        out_bias: bool = True,
        scale_qk: bool = True,
        only_cross_attention: bool = False,
        eps: float = 1e-5,
        rescale_output_factor: float = 1.0,
        residual_connection: bool = False,
        _from_deprecated_attn_block: bool = False,
        processor: Optional["AttnProcessor"] = None,
        out_dim: int = None,
    ):
        super().__init__()
        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
        self.query_dim = query_dim
        self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
        self.rescale_output_factor = rescale_output_factor
        self.residual_connection = residual_connection
        self.dropout = dropout
        self.fused_projections = False
        self.out_dim = out_dim if out_dim is not None else query_dim

        # we make use of this private variable to know whether this class is loaded
        # with an deprecated state dict so that we can convert it on the fly
        self._from_deprecated_attn_block = _from_deprecated_attn_block

        self.scale_qk = scale_qk
        self.scale = dim_head**-0.5 if self.scale_qk else 1.0

        self.heads = out_dim // dim_head if out_dim is not None else heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )

        if norm_num_groups is not None:
            self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
        else:
            self.group_norm = None

        if spatial_norm_dim is not None:
            self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
        else:
            self.spatial_norm = None

        if cross_attention_norm is None:
            self.norm_cross = None
        elif cross_attention_norm == "layer_norm":
            self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
        elif cross_attention_norm == "group_norm":
            if self.added_kv_proj_dim is not None:
                # The given `encoder_hidden_states` are initially of shape
                # (batch_size, seq_len, added_kv_proj_dim) before being projected
                # to (batch_size, seq_len, cross_attention_dim). The norm is applied
                # before the projection, so we need to use `added_kv_proj_dim` as
                # the number of channels for the group norm.
                norm_cross_num_channels = added_kv_proj_dim
            else:
                norm_cross_num_channels = self.cross_attention_dim

            self.norm_cross = nn.GroupNorm(
                num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
            )
        else:
            raise ValueError(
                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
            )

        if USE_PEFT_BACKEND:
            linear_cls = nn.Linear
        else:
            linear_cls = LoRACompatibleLinear

        self.linear_cls = linear_cls
        self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
            self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
            self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
        else:
            self.to_k = None
            self.to_v = None

        if self.added_kv_proj_dim is not None:
            self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
            self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)

        self.to_out = nn.ModuleList([])
        self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias))
        self.to_out.append(nn.Dropout(dropout))

        # set attention processor
        # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
        if processor is None:
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
        self.set_processor(processor)

    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
    ) -> None:
        r"""
        Set whether to use memory efficient attention from `xformers` or not.

        Args:
            use_memory_efficient_attention_xformers (`bool`):
                Whether to use memory efficient attention from `xformers` or not.
            attention_op (`Callable`, *optional*):
                The attention operation to use. Defaults to `None` which uses the default attention operation from
                `xformers`.
        """
        is_lora = hasattr(self, "processor") and isinstance(
            self.processor,
            LORA_ATTENTION_PROCESSORS,
        )
        is_custom_diffusion = hasattr(self, "processor") and isinstance(
            self.processor,
            (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0),
        )
        is_added_kv_processor = hasattr(self, "processor") and isinstance(
            self.processor,
            (
                AttnAddedKVProcessor,
                AttnAddedKVProcessor2_0,
                SlicedAttnAddedKVProcessor,
                XFormersAttnAddedKVProcessor,
                LoRAAttnAddedKVProcessor,
            ),
        )

        if use_memory_efficient_attention_xformers:
            if is_added_kv_processor and (is_lora or is_custom_diffusion):
                raise NotImplementedError(
                    f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
                )
            if not is_xformers_available():
                raise ModuleNotFoundError(
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e

            if is_lora:
                # TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
                # variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
                processor = LoRAXFormersAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
            elif is_custom_diffusion:
                processor = CustomDiffusionXFormersAttnProcessor(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
            elif is_added_kv_processor:
                # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
                # which uses this type of cross attention ONLY because the attention mask of format
                # [0, ..., -10.000, ..., 0, ...,] is not supported
                # throw warning
                logger.info(
                    "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
                )
                processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
            else:
                processor = XFormersAttnProcessor(attention_op=attention_op)
        else:
            if is_lora:
                attn_processor_class = (
                    LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
                )
                processor = attn_processor_class(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
            elif is_custom_diffusion:
                attn_processor_class = (
                    CustomDiffusionAttnProcessor2_0
                    if hasattr(F, "scaled_dot_product_attention")
                    else CustomDiffusionAttnProcessor
                )
                processor = attn_processor_class(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
            else:
                # set attention processor
                # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
                # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
                # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
                processor = (
                    AttnProcessor2_0()
                    if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
                    else AttnProcessor()
                )

        self.set_processor(processor)

    def set_attention_slice(self, slice_size: int) -> None:
        r"""
        Set the slice size for attention computation.

        Args:
            slice_size (`int`):
                The slice size for attention computation.
        """
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        if slice_size is not None and self.added_kv_proj_dim is not None:
            processor = SlicedAttnAddedKVProcessor(slice_size)
        elif slice_size is not None:
            processor = SlicedAttnProcessor(slice_size)
        elif self.added_kv_proj_dim is not None:
            processor = AttnAddedKVProcessor()
        else:
            # set attention processor
            # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
            # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
            # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )

        self.set_processor(processor)

    def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None:
        r"""
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
            _remove_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to remove LoRA layers from the model.
        """
        if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None:
            deprecate(
                "set_processor to offload LoRA",
                "0.26.0",
                "In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.",
            )
            # TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete
            # We need to remove all LoRA layers
            # Don't forget to remove ALL `_remove_lora` from the codebase
            for module in self.modules():
                if hasattr(module, "set_lora_layer"):
                    module.set_lora_layer(None)

        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

    def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
        r"""
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
        if not return_deprecated_lora:
            return self.processor

        # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
        # serialization format for LoRA Attention Processors. It should be deleted once the integration
        # with PEFT is completed.
        is_lora_activated = {
            name: module.lora_layer is not None
            for name, module in self.named_modules()
            if hasattr(module, "lora_layer")
        }

        # 1. if no layer has a LoRA activated we can return the processor as usual
        if not any(is_lora_activated.values()):
            return self.processor

        # If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
        is_lora_activated.pop("add_k_proj", None)
        is_lora_activated.pop("add_v_proj", None)
        # 2. else it is not posssible that only some layers have LoRA activated
        if not all(is_lora_activated.values()):
            raise ValueError(
                f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
            )

        # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
        non_lora_processor_cls_name = self.processor.__class__.__name__
        lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)

        hidden_size = self.inner_dim

        # now create a LoRA attention processor from the LoRA layers
        if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
            kwargs = {
                "cross_attention_dim": self.cross_attention_dim,
                "rank": self.to_q.lora_layer.rank,
                "network_alpha": self.to_q.lora_layer.network_alpha,
                "q_rank": self.to_q.lora_layer.rank,
                "q_hidden_size": self.to_q.lora_layer.out_features,
                "k_rank": self.to_k.lora_layer.rank,
                "k_hidden_size": self.to_k.lora_layer.out_features,
                "v_rank": self.to_v.lora_layer.rank,
                "v_hidden_size": self.to_v.lora_layer.out_features,
                "out_rank": self.to_out[0].lora_layer.rank,
                "out_hidden_size": self.to_out[0].lora_layer.out_features,
            }

            if hasattr(self.processor, "attention_op"):
                kwargs["attention_op"] = self.processor.attention_op

            lora_processor = lora_processor_cls(hidden_size, **kwargs)
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
        elif lora_processor_cls == LoRAAttnAddedKVProcessor:
            lora_processor = lora_processor_cls(
                hidden_size,
                cross_attention_dim=self.add_k_proj.weight.shape[0],
                rank=self.to_q.lora_layer.rank,
                network_alpha=self.to_q.lora_layer.network_alpha,
            )
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())

            # only save if used
            if self.add_k_proj.lora_layer is not None:
                lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
                lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
            else:
                lora_processor.add_k_proj_lora = None
                lora_processor.add_v_proj_lora = None
        else:
            raise ValueError(f"{lora_processor_cls} does not exist.")

        return lora_processor

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        **cross_attention_kwargs,
    ) -> torch.Tensor:
        r"""
        The forward method of the `Attention` class.

        Args:
            hidden_states (`torch.Tensor`):
                The hidden states of the query.
            encoder_hidden_states (`torch.Tensor`, *optional*):
                The hidden states of the encoder.
            attention_mask (`torch.Tensor`, *optional*):
                The attention mask to use. If `None`, no mask is applied.
            **cross_attention_kwargs:
                Additional keyword arguments to pass along to the cross attention.

        Returns:
            `torch.Tensor`: The output of the attention layer.
        """
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

    def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
        is the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
        the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.
            out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
                reshaped to `[batch_size * heads, seq_len, dim // heads]`.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3)

        if out_dim == 3:
            tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)

        return tensor

    def get_attention_scores(
        self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
    ) -> torch.Tensor:
        r"""
        Compute the attention scores.

        Args:
            query (`torch.Tensor`): The query tensor.
            key (`torch.Tensor`): The key tensor.
            attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.

        Returns:
            `torch.Tensor`: The attention probabilities/scores.
        """
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

        attention_scores = torch.baddbmm(
            baddbmm_input,
            query,
            key.transpose(-1, -2),
            beta=beta,
            alpha=self.scale,
        )
        del baddbmm_input

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
        del attention_scores

        attention_probs = attention_probs.to(dtype)

        return attention_probs

    def prepare_attention_mask(
        self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3
    ) -> torch.Tensor:
        r"""
        Prepare the attention mask for the attention computation.

        Args:
            attention_mask (`torch.Tensor`):
                The attention mask to prepare.
            target_length (`int`):
                The target length of the attention mask. This is the length of the attention mask after padding.
            batch_size (`int`):
                The batch size, which is used to repeat the attention mask.
            out_dim (`int`, *optional*, defaults to `3`):
                The output dimension of the attention mask. Can be either `3` or `4`.

        Returns:
            `torch.Tensor`: The prepared attention mask.
        """
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

        current_length: int = attention_mask.shape[-1]
        if current_length != target_length:
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
                padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat([attention_mask, padding], dim=2)
            else:
                # TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
                #       we want to instead pad by (0, remaining_length), where remaining_length is:
                #       remaining_length: int = target_length - current_length
                # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)

        if out_dim == 3:
            if attention_mask.shape[0] < batch_size * head_size:
                attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        elif out_dim == 4:
            attention_mask = attention_mask.unsqueeze(1)
            attention_mask = attention_mask.repeat_interleave(head_size, dim=1)

        return attention_mask

    def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
        r"""
        Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
        `Attention` class.

        Args:
            encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.

        Returns:
            `torch.Tensor`: The normalized encoder hidden states.
        """
        assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"

        if isinstance(self.norm_cross, nn.LayerNorm):
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
        elif isinstance(self.norm_cross, nn.GroupNorm):
            # Group norm norms along the channels dimension and expects
            # input to be in the shape of (N, C, *). In this case, we want
            # to norm along the hidden dimension, so we need to move
            # (batch_size, sequence_length, hidden_size) ->
            # (batch_size, hidden_size, sequence_length)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
        else:
            assert False

        return encoder_hidden_states

    @torch.no_grad()
    def fuse_projections(self, fuse=True):
        is_cross_attention = self.cross_attention_dim != self.query_dim
        device = self.to_q.weight.data.device
        dtype = self.to_q.weight.data.dtype

        if not is_cross_attention:
            # fetch weight matrices.
            concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

            # create a new single projection layer and copy over the weights.
            self.to_qkv = self.linear_cls(in_features, out_features, bias=False, device=device, dtype=dtype)
            self.to_qkv.weight.copy_(concatenated_weights)

        else:
            concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

            self.to_kv = self.linear_cls(in_features, out_features, bias=False, device=device, dtype=dtype)
            self.to_kv.weight.copy_(concatenated_weights)

        self.fused_projections = fuse


class AttnProcessor:
    r"""
    Default processor for performing attention-related computations.
    """

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> torch.Tensor:
        residual = hidden_states

        args = () if USE_PEFT_BACKEND else (scale,)

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states, *args)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states, *args)
        value = attn.to_v(encoder_hidden_states, *args)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states, *args)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class CustomDiffusionAttnProcessor(nn.Module):
    r"""
    Processor for implementing attention for the Custom Diffusion method.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

    def __init__(
        self,
        train_kv: bool = True,
        train_q_out: bool = True,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
        else:
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


class AttnAddedKVProcessor:
    r"""
    Processor for performing attention-related computations with extra learnable key and value matrices for the text
    encoder.
    """

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> torch.Tensor:
        residual = hidden_states

        args = () if USE_PEFT_BACKEND else (scale,)

        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states, *args)
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states, *args)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states, *args)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states, *args)
            value = attn.to_v(hidden_states, *args)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states, *args)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


class AttnAddedKVProcessor2_0:
    r"""
    Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra
    learnable key and value matrices for the text encoder.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
    ) -> torch.Tensor:
        residual = hidden_states

        args = () if USE_PEFT_BACKEND else (scale,)

        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states, *args)
        query = attn.head_to_batch_dim(query, out_dim=4)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)

        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states, *args)
            value = attn.to_v(hidden_states, *args)
            key = attn.head_to_batch_dim(key, out_dim=4)
            value = attn.head_to_batch_dim(value, out_dim=4)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])

        # linear proj
        hidden_states = attn.to_out[0](hidden_states, *args)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1449898.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】yum软件包管理器

目录 Linux 软件包管理器 yum 什么是软件包 Linux安装软件 查看软件包 关于rzsz Linux卸载软件 查看yum源 扩展yum源下载 Linux开发工具 vim编辑器 上述vim三种模式之间的切换总结&#xff1a; 命令模式下&#xff0c;一些命令&#xff1a; vim配置 Linux 软件包管理…

BUGKU-WEB 社工-初步收集

题目描述 题目截图如下&#xff1a; 描述:其实是杂项&#xff0c;勉强算社工吧。来自当年实战 进入场景看看&#xff1a; 解题思路 做题先看源码关注可下载的资源(zip压缩包)抓包寻找可能存在的加密信息&#xff08;base64&#xff09;不管三七二十一先扫描目录再说 ps&…

【小记】MacOS Install golang

问题 - command not found: go ➜ brew install golang ➜ go version go version go1.21.7 darwin/arm64写在最后&#xff1a;若本文章对您有帮助&#xff0c;请点个赞啦 ٩(๑•̀ω•́๑)۶

.target勒索病毒解密方法|勒索病毒解决|勒索病毒恢复|数据库修复

导言&#xff1a; 网络安全威胁如勒索病毒已经成为企业和个人数据安全的重大挑战之一。.target勒索病毒作为其中的一种&#xff0c;以其高度复杂的加密算法和迅速变化的攻击手法备受关注。本文将深入介绍.target勒索病毒的特点&#xff0c;探讨如何有效地恢复被加密的数据文件…

计网day3

四 链路层 4.1 基本概念 4.2 封装成帧 4.3 差错控制 4.4 流量控制与可靠传输机制 停止-等待协议&#xff1a; 后退N帧协议&#xff08;GBN&#xff09; 选择重传协议&#xff08;SR&#xff09;&#xff1a; 4.5 信道划分介质访问控制 ALOHA协议&#…

大厂的供应链采购系统设计

关注我&#xff0c;紧跟本系列专栏文章&#xff0c;咱们下篇再续&#xff01; 作者简介&#xff1a;魔都技术专家兼架构&#xff0c;多家大厂后端一线研发经验&#xff0c;各大技术社区头部专家博主&#xff0c;编程严选网创始人。具有丰富的引领团队经验&#xff0c;深厚业务架…

嵌入式CAN通信协议原理(下)

本篇文章结合实际CAN控制器继续介绍协议相关的内容&#xff0c;还有示例讲解。 好了&#xff0c;继续吧&#xff01; 二. STM32 CAN 控制器介绍 STM32 的芯片中具有 bxCAN 控制器 (Basic Extended CAN)&#xff0c;它支持 CAN 协议 2.0A 和 2.0B 标准。 该 CAN 控制器支持最…

【JAVA】计算机软件工程人工智能研究生复试资料整理

1、JAVA 2、计算机网络 3、计算机体系结构 4、数据库 5、计算机租场原理 6、软件工程 7、大数据 8、英文 自我介绍 1. Java 1. == 和 equals的区别 比较基本数据类型是比较的值,引用数据类型是比较两个是不是同一个对象,也就是引用是否指向同 一个对象,地址是否相同,equ…

【Java】零基础蓝桥杯算法学习——线性动态规划(一维dp)

线性dp——一维动态规划 1、考虑最后一步可以由哪些状态得到&#xff0c;推出转移方程 2、考虑当前状态与哪些参数有关系&#xff0c;定义几维数组来表示当前状态 3、计算时间复杂度&#xff0c;判断是否需要进行优化。 一维动态规划例题&#xff1a;最大上升子序列问题 Java参…

【C++第二阶段-重载-关系运算符函数调用】

你好你好&#xff01; 以下内容仅为当前认识&#xff0c;可能有不足之处&#xff0c;欢迎讨论&#xff01; 文章目录 关系运算符-重载-判断相等函数调用运算符重载 关系运算符-重载-判断相等 场景&#xff1a;两个对象&#xff0c;若有年龄和性别的不同&#xff0c;是否可以直…

算法学习——LeetCode力扣贪心篇1

算法学习——LeetCode力扣贪心篇1 455. 分发饼干 455. 分发饼干 - 力扣&#xff08;LeetCode&#xff09; 描述 假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子 i&#xff0c;都有一个胃口值 g[…

android 控制台输出 缺失

问题 android 控制台输出内容缺失 详细问题 笔者进行android开发&#xff0c;期望控制台打印Log日志或是输出内容 Log.i("tag","content");或 System.out.println("content")但是实际上&#xff0c;上述内容并没有按照笔者期望打印 解决方…

【sgSearch】自定义组件:常用搜索栏筛选框组件(包括表格高度变化兼容)。

sgSearch源码 <template><div :class"$options.name" :expand"expandSearch" :showCollapseBtn"showCollapseBtn"><!-- v-clickoutside"(d) > (expandSearch false)" --><ul class"search-list"&…

代码随想录算法训练营Day57|647. 回文子串、516.最长回文子序列、动态规划总结

目录 647. 回文子串 前言 思路 算法实现 516.最长回文子序列 前言 思路 算法实现 动态规划总结 动规五部曲回顾 动规各小专题问题 647. 回文子串 题目链接 文章链接 前言 本题利用动态规划求解时&#xff0c;dp数组的定义与前面的就有些不同了&#xff0c;是难点之…

Python算法题集_翻转二叉树

Python算法题集_翻转二叉树 题226&#xff1a;翻转二叉树1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【DFS递归】2) 改进版一【BFS迭代&#xff0c;节点循环】3) 改进版二【BFS迭代&#xff0c;列表循环】 4. 最优算法 本文为Python算法题集…

黄金交易策略(Nerve Nnife.mql4):利用锁定单消除保留单

完整EA&#xff1a; Nerve Knife.ex4黄金交易策略_黄金趋势ea-CSDN博客 趋势突然转变有大约30%的概率会产生一张锁定单&#xff0c;反复转变之后难免就会形成几个保留单了&#xff0c;可以选择一张与保留单同向同大小&#xff08;接近也行&#xff09;的单&#xff0c;去消除这…

详解Python中的str.format方法

字符串的内置方法大致有40来个&#xff0c;但是一些常用的其实就那么20几个&#xff0c;而且里面还有类似的用法&#xff0c;区分度高比如&#xff1a;isalpha,isalnum,isdigit&#xff0c;还有一些无时不刻都会用到的split切分&#xff0c;join拼接&#xff0c;strip首尾去指定…

深度学习:Pytorch安装的torch与torchvision的cuda版本冲突问题与解决历程记录

今天不小心将conda环境中的一个pytorch环境中的torch包给搞混了&#xff0c;将其更新了一下&#xff0c;发生了一些问题&#xff1a; 当时运行了一下这个代码&#xff1a; pip install torchvision --upgrade 导致了环境中包的混乱&#xff1a; 只能说欲哭无泪&#xff0c;当…

代码随想录day21--回溯基础

理论基础 回溯法也可以叫回溯搜索法&#xff0c;它是一种搜索的方式。我们在二叉树中也多次提到了回溯。回溯是递归的副产品&#xff0c;只要使用了递归就会有回溯&#xff0c;我们我们就可以笼统的将回溯函数称为递归函数 回溯法解决的问题 1.组合问题&#xff1a;N个数里面…

IMX6ULL移植U-Boot 2022.04

目录 目录 1.编译环境以及uboot版本 2.默认编译测试 3.uboot中新增自己的开发板 3.编译测试 4.烧录测试 5.patch文件 1.编译环境以及uboot版本 宿主机Debian12u-boot版本lf_v2022.04 ; git 连接GitHub - nxp-imx/uboot-imx: i.MX U-Boot交叉编译工具gcc-arm-10.3-2021.0…