LeetCode 每日一题 Day 62 - 75

news2025/1/10 10:20:58

1686. 石子游戏 VI

Alice 和 Bob 轮流玩一个游戏,Alice 先手。

一堆石子里总共有 n 个石子,轮到某个玩家时,他可以 移出 一个石子并得到这个石子的价值。Alice 和 Bob 对石子价值有 不一样的的评判标准 。双方都知道对方的评判标准。

给你两个长度为 n 的整数数组 aliceValues 和 bobValues 。aliceValues[i] 和 bobValues[i] 分别表示 Alice 和 Bob 认为第 i 个石子的价值。

所有石子都被取完后,得分较高的人为胜者。如果两个玩家得分相同,那么为平局。两位玩家都会采用 最优策略 进行游戏。

请你推断游戏的结果,用如下的方式表示:

如果 Alice 赢,返回 1 。
如果 Bob 赢,返回 -1 。
如果游戏平局,返回 0 。

示例 1:

输入:aliceValues = [1,3], bobValues = [2,1]
输出:1
解释:
如果 Alice 拿石子 1 (下标从 0开始),那么 Alice 可以得到 3 分。
Bob 只能选择石子 0 ,得到 2 分。
Alice 获胜。
示例 2:

输入:aliceValues = [1,2], bobValues = [3,1]
输出:0
解释:
Alice 拿石子 0 , Bob 拿石子 1 ,他们得分都为 1 分。
打平。
示例 3:

输入:aliceValues = [2,4,3], bobValues = [1,6,7]
输出:-1
解释:
不管 Alice 怎么操作,Bob 都可以得到比 Alice 更高的得分。
比方说,Alice 拿石子 1 ,Bob 拿石子 2 , Alice 拿石子 0 ,Alice 会得到 6 分而 Bob 得分为 7 分。
Bob 会获胜。

提示:

n == aliceValues.length == bobValues.length
1 <= n <= 1e5
1 <= aliceValues[i], bobValues[i] <= 100

贪心做法:

class Solution {
public:
    int stoneGameVI(vector<int>& aliceValues, vector<int>& bobValues) {
        int n = aliceValues.size();
        vector<pair<int, int>> diff(n);

        for (int i = 0; i < n; ++i) {
            diff[i] = {aliceValues[i] + bobValues[i], i};
        }

        sort(diff.begin(), diff.end(), greater<pair<int, int>>());

        int aliceScore = 0, bobScore = 0;

        for (int i = 0; i < n; ++i) {
            int idx = diff[i].second;
            if (i % 2 == 0) {
                aliceScore += aliceValues[idx];
            } else {
                bobScore += bobValues[idx];
            }
        }

        if (aliceScore > bobScore) {
            return 1;
        } else if (aliceScore < bobScore) {
            return -1;
        } else {
            return 0;
        }
    }
};

1690. 石子游戏 VII

石子游戏中,爱丽丝和鲍勃轮流进行自己的回合,爱丽丝先开始 。

有 n 块石子排成一排。每个玩家的回合中,可以从行中 移除 最左边的石头或最右边的石头,并获得与该行中剩余石头值之 和 相等的得分。当没有石头可移除时,得分较高者获胜。

鲍勃发现他总是输掉游戏(可怜的鲍勃,他总是输),所以他决定尽力 减小得分的差值 。爱丽丝的目标是最大限度地 扩大得分的差值 。

给你一个整数数组 stones ,其中 stones[i] 表示 从左边开始 的第 i 个石头的值,如果爱丽丝和鲍勃都 发挥出最佳水平 ,请返回他们 得分的差值 。

示例 1:

输入:stones = [5,3,1,4,2]
输出:6
解释:

  • 爱丽丝移除 2 ,得分 5 + 3 + 1 + 4 = 13 。游戏情况:爱丽丝 = 13 ,鲍勃 = 0 ,石子 = [5,3,1,4] 。
  • 鲍勃移除 5 ,得分 3 + 1 + 4 = 8 。游戏情况:爱丽丝 = 13 ,鲍勃 = 8 ,石子 = [3,1,4] 。
  • 爱丽丝移除 3 ,得分 1 + 4 = 5 。游戏情况:爱丽丝 = 18 ,鲍勃 = 8 ,石子 = [1,4] 。
  • 鲍勃移除 1 ,得分 4 。游戏情况:爱丽丝 = 18 ,鲍勃 = 12 ,石子 = [4] 。
  • 爱丽丝移除 4 ,得分 0 。游戏情况:爱丽丝 = 18 ,鲍勃 = 12 ,石子 = [] 。
    得分的差值 18 - 12 = 6 。
    示例 2:

输入:stones = [7,90,5,1,100,10,10,2]
输出:122

提示:

n == stones.length
2 <= n <= 1000
1 <= stones[i] <= 1000

博弈DP 没有思路参考了题解:

class Solution {
    int p[1010], q[1010];
    int f[1010][1010];

public:
    int stoneGameVII(vector<int>& a) {
        int n = a.size();
        for (int i = 1; i <= n; i++)
            p[i] = a[i - 1], q[i] = q[i - 1] + p[i];
        for (int i = 1; i <= n; i++)
            f[i][i] = p[i];
        for (int i = n; i >= 1; i--) {
            for (int j = i + 1; j <= n; j++) {
                int x = q[j] - q[i];
                int y = q[j - 1] - q[i - 1];
                f[i][j] = min(p[i] + x - f[i + 1][j], p[j] + y - f[i][j - 1]);
            }
        }
        return q[n] - f[1][n];
    }
};

292. Nim 游戏

你和你的朋友,两个人一起玩 Nim 游戏:

桌子上有一堆石头。

  • 你们轮流进行自己的回合, 你作为先手 。
  • 每一回合,轮到的人拿掉 1 - 3 块石头。
  • 拿掉最后一块石头的人就是获胜者。
  • 假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可以赢,返回 true;否则,返回 false 。

示例 1:

输入:n = 4
输出:false
解释:以下是可能的结果:

  1. 移除1颗石头。你的朋友移走了3块石头,包括最后一块。你的朋友赢了。
  2. 移除2个石子。你的朋友移走2块石头,包括最后一块。你的朋友赢了。
    3.你移走3颗石子。你的朋友移走了最后一块石头。你的朋友赢了。
    在所有结果中,你的朋友是赢家。

示例 2:

输入:n = 1
输出:true

示例 3:

输入:n = 2
输出:true

实际上是一个数学题(博弈论?):

class Solution {
public:
    bool canWinNim(int n) {
        return n % 4 != 0;
    }
};

1696. 跳跃游戏 VI

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。

一开始你在下标 0 处。每一步,你最多可以往前跳 k 步,但你不能跳出数组的边界。也就是说,你可以从下标 i 跳到 [i + 1, min(n - 1, i + k)] 包含 两个端点的任意位置。

你的目标是到达数组最后一个位置(下标为 n - 1 ),你的 得分 为经过的所有数字之和。

请你返回你能得到的 最大得分 。

示例 1:

输入:nums = [1,-1,-2,4,-7,3], k = 2
输出:7
解释:你可以选择子序列 [1,-1,4,3] (上面加粗的数字),和为 7 。
示例 2:

输入:nums = [10,-5,-2,4,0,3], k = 3
输出:17
解释:你可以选择子序列 [10,4,3] (上面加粗数字),和为 17 。
示例 3:

输入:nums = [1,-5,-20,4,-1,3,-6,-3], k = 2
输出:0

提示:

1 <= nums.length, k <= 1e5
-104 <= nums[i] <= 1e4

单调队列+DP :

class Solution {
public:
    int maxResult(vector<int> &nums, int k) {
        deque<int> q = {0};
        for (int i = 1; i < nums.size(); i++) {
            // 1. 出
            if (q.front() < i - k) {
                q.pop_front();
            }
            // 2. 转移
            nums[i] += nums[q.front()];
            // 3. 入
            while (!q.empty() && nums[i] >= nums[q.back()]) {
                q.pop_back();
            }
            q.push_back(i);
        }
        return nums.back();
    }
};

LCP 30. 魔塔游戏

小扣当前位于魔塔游戏第一层,共有 N 个房间,编号为 0 ~ N-1。每个房间的补血道具/怪物对于血量影响记于数组 nums,其中正数表示道具补血数值,即血量增加对应数值;负数表示怪物造成伤害值,即血量减少对应数值;0 表示房间对血量无影响。

小扣初始血量为 1,且无上限。假定小扣原计划按房间编号升序访问所有房间补血/打怪,为保证血量始终为正值,小扣需对房间访问顺序进行调整,每次仅能将一个怪物房间(负数的房间)调整至访问顺序末尾。请返回小扣最少需要调整几次,才能顺利访问所有房间。若调整顺序也无法访问完全部房间,请返回 -1。

示例 1:

输入:nums = [100,100,100,-250,-60,-140,-50,-50,100,150]

输出:1

解释:初始血量为 1。至少需要将 nums[3] 调整至访问顺序末尾以满足要求。

示例 2:

输入:nums = [-200,-300,400,0]

输出:-1

解释:调整访问顺序也无法完成全部房间的访问。

提示:

1 <= nums.length <= 10^5
-10^5 <= nums[i] <= 10^5

参考了题解,贪心+优先队列:

class Solution {
public:
    int magicTower(vector<int>& nums) {
        int numsSize = nums.size();

        long long sum = 0;
        for (int i = 0; i < numsSize; i++) {
            sum += nums[i];
        }

        if (sum < 0)
            return -1;
        int cnt = 0;
        long long hp = 1;
        priority_queue<int, vector<int>, greater<int>> que;
        for (int i = 0; i < numsSize; i++) {
            que.emplace(nums[i]);

            while (hp + nums[i] <= 0) {
                cnt++;
                hp -= que.top();
                que.pop();
            }

            hp += nums[i];
        }
        return cnt;
    }
};

2641. 二叉树的堂兄弟节点 II

给你一棵二叉树的根 root ,请你将每个节点的值替换成该节点的所有 堂兄弟节点值的和 。

如果两个节点在树中有相同的深度且它们的父节点不同,那么它们互为 堂兄弟 。

请你返回修改值之后,树的根 root 。

注意,一个节点的深度指的是从树根节点到这个节点经过的边数。

示例 1:

在这里插入图片描述

输入:root = [5,4,9,1,10,null,7]
输出:[0,0,0,7,7,null,11]
解释:上图展示了初始的二叉树和修改每个节点的值之后的二叉树。

  • 值为 5 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 4 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 9 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 1 的节点有一个堂兄弟,值为 7 ,所以值修改为 7 。
  • 值为 10 的节点有一个堂兄弟,值为 7 ,所以值修改为 7 。
  • 值为 7 的节点有两个堂兄弟,值分别为 1 和 10 ,所以值修改为 11 。

示例 2:
在这里插入图片描述

输入:root = [3,1,2]
输出:[0,0,0]
解释:上图展示了初始的二叉树和修改每个节点的值之后的二叉树。

  • 值为 3 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 1 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 2 的节点没有堂兄弟,所以值修改为 0 。

提示:

树中节点数目的范围是 [1, 1e5] 。
1 <= Node.val <= 1e4

菜鸡不会这题,读者可以看看灵神题解:

class Solution {
public:
    TreeNode *replaceValueInTree(TreeNode *root) {
        root->val = 0;
        vector<TreeNode*> q = {root};
        while (!q.empty()) {
            vector<TreeNode*> nxt;
            // 计算下一层的节点值之和
            int next_level_sum = 0;
            for (auto node : q) {
                if (node->left) {
                    nxt.push_back(node->left);
                    next_level_sum += node->left->val;
                }
                if (node->right) {
                    nxt.push_back(node->right);
                    next_level_sum += node->right->val;
                }
            }

            // 再次遍历,更新下一层的节点值
            for (auto node : q) {
                int children_sum = (node->left ? node->left->val : 0) +
                                   (node->right ? node->right->val : 0);
                if (node->left) node->left->val = next_level_sum - children_sum;
                if (node->right) node->right->val = next_level_sum - children_sum;
            }
            q = move(nxt);
        }
        return root;
    }
};

题解:BFS+算两次

993. 二叉树的堂兄弟节点

在二叉树中,根节点位于深度 0 处,每个深度为 k 的节点的子节点位于深度 k+1 处。

如果二叉树的两个节点深度相同,但 父节点不同 ,则它们是一对堂兄弟节点。

我们给出了具有唯一值的二叉树的根节点 root ,以及树中两个不同节点的值 x 和 y 。

只有与值 x 和 y 对应的节点是堂兄弟节点时,才返回 true 。否则,返回 false。

示例 1:
在这里插入图片描述

输入:root = [1,2,3,4], x = 4, y = 3
输出:false

示例 2:
在这里插入图片描述

输入:root = [1,2,3,null,4,null,5], x = 5, y = 4
输出:true

示例 3:
在这里插入图片描述

输入:root = [1,2,3,null,4], x = 2, y = 3
输出:false

提示:

二叉树的节点数介于 2 到 100 之间。
每个节点的值都是唯一的、范围为 1 到 100 的整数。

深度优先搜索DFS:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    bool isCousins(TreeNode* root, int x, int y) {
        bool ans = false;
        int depth = 0;
        TreeNode* father = nullptr;
        function<bool(TreeNode*, TreeNode*, int)> dfs =
            [&](TreeNode* node, TreeNode* fa, int d) -> bool {
            if (node == nullptr) {
                return false;
            }
            if (node->val == x || node->val == y) {
                if (depth) {
                    ans = depth == d && father != fa;
                    return true;
                }
                depth = d;
                father = fa;
            }
            return dfs(node->left, node, d + 1) ||
                   dfs(node->right, node, d + 1);
        };
        dfs(root, nullptr, 1);
        return ans;
    }
};

236. 二叉树的最近公共祖先

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

示例 1:
在这里插入图片描述

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。

示例 2:

在这里插入图片描述

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出:5
解释:节点 5 和节点 4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。

示例 3:

输入:root = [1,2], p = 1, q = 2
输出:1

提示:

树中节点数目在范围 [2, 1e5] 内。
-1e9 <= Node.val <= 1e9
所有 Node.val 互不相同 。
p != q
p 和 q 均存在于给定的二叉树中。

参考了题解,递归:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == nullptr || root == p || root == q) {
            return root;
        }
        auto left = lowestCommonAncestor(root->left, p, q);
        auto right = lowestCommonAncestor(root->right, p, q);
        if (left && right) {
            return root;
        }
        return left ? left : right;
    }
};

94. 二叉树的中序遍历

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

示例 1:

在这里插入图片描述

输入:root = [1,null,2,3]
输出:[1,3,2]
示例 2:

输入:root = []
输出:[]
示例 3:

输入:root = [1]
输出:[1]

提示:

树中节点数目在范围 [0, 100] 内
-100 <= Node.val <= 100

进阶: 递归算法很简单,你可以通过迭代算法完成吗?

数据结构基础:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
    void midorder(TreeNode* cur, vector<int>& vec) {
        if (cur == NULL) {
            return;
        }
        midorder(cur->left, vec);
        vec.push_back(cur->val);
        midorder(cur->right, vec);
    }

public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> vec;
        midorder(root, vec);
        return vec;
    }
};

144. 二叉树的前序遍历

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:
在这里插入图片描述

输入:root = [1,null,2,3]
输出:[1,2,3]
示例 2:
在这里插入图片描述

输入:root = []
输出:[]
示例 3:

输入:root = [1]
输出:[1]
示例 4:

输入:root = [1,2]
输出:[1,2]
示例 5:

输入:root = [1,null,2]
输出:[1,2]

提示:

树中节点数目在范围 [0, 100] 内
-100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

过年福利,数据结构基础:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    void preorder(TreeNode* root, vector<int>& vec) {
        if (root == NULL) {
            return;
        }
        vec.push_back(root->val);
        preorder(root->left, vec);
        preorder(root->right, vec);
    }
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> vec;
        preorder(root, vec);
        return vec;
    }
};

145. 二叉树的后序遍历

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。

示例 1:
在这里插入图片描述

输入:root = [1,null,2,3]
输出:[3,2,1]
示例 2:

输入:root = []
输出:[]
示例 3:

输入:root = [1]
输出:[1]

提示:

树中节点的数目在范围 [0, 100] 内
-100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

仍然是数据结构基础:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void lastorder(TreeNode *cur,vector<int> &vec){
        if(cur==NULL){
            return;
        }
        
        lastorder(cur->left,vec);
        lastorder(cur->right,vec);
        vec.push_back(cur->val);
        

    }
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> vec;
        lastorder(root,vec);
        return vec;
    }
};

987. 二叉树的垂序遍历

给你二叉树的根结点 root ,请你设计算法计算二叉树的 垂序遍历 序列。

对位于 (row, col) 的每个结点而言,其左右子结点分别位于 (row + 1, col - 1) 和 (row + 1, col + 1) 。树的根结点位于 (0, 0) 。

二叉树的 垂序遍历 从最左边的列开始直到最右边的列结束,按列索引每一列上的所有结点,形成一个按出现位置从上到下排序的有序列表。如果同行同列上有多个结点,则按结点的值从小到大进行排序。

返回二叉树的 垂序遍历 序列。

示例 1:

在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:[[9],[3,15],[20],[7]]
解释:
列 -1 :只有结点 9 在此列中。
列 0 :只有结点 3 和 15 在此列中,按从上到下顺序。
列 1 :只有结点 20 在此列中。
列 2 :只有结点 7 在此列中。
示例 2:
在这里插入图片描述

输入:root = [1,2,3,4,5,6,7]
输出:[[4],[2],[1,5,6],[3],[7]]
解释:
列 -2 :只有结点 4 在此列中。
列 -1 :只有结点 2 在此列中。
列 0 :结点 1 、5 和 6 都在此列中。
1 在上面,所以它出现在前面。
5 和 6 位置都是 (2, 0) ,所以按值从小到大排序,5 在 6 的前面。
列 1 :只有结点 3 在此列中。
列 2 :只有结点 7 在此列中。
示例 3:

在这里插入图片描述

输入:root = [1,2,3,4,6,5,7]
输出:[[4],[2],[1,5,6],[3],[7]]
解释:
这个示例实际上与示例 2 完全相同,只是结点 5 和 6 在树中的位置发生了交换。
因为 5 和 6 的位置仍然相同,所以答案保持不变,仍然按值从小到大排序。

提示:

树中结点数目总数在范围 [1, 1000] 内
0 <= Node.val <= 1000

菜鸡不会orz 看了大佬们的题解(DFS+哈希):

class Solution {
    map<int, vector<pair<int, int>>> groups;

    void dfs(TreeNode* node, int row, int col) {
        if (node == nullptr) {
            return;
        }

        groups[col].emplace_back(row, node->val);
        dfs(node->left, row + 1, col - 1);
        dfs(node->right, row + 1, col + 1);
    }

public:
    vector<vector<int>> verticalTraversal(TreeNode* root) {
        dfs(root, 0, 0);
        vector<vector<int>> ans;
        for (auto& [_, g] : groups) {
            ranges::sort(g);
            vector<int> vals;
            for (auto& [_, val] : g) {
                vals.push_back(val);
            }
            ans.push_back(vals);
        }
        return ans;
    }
};


102. 二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

示例 1:

在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例 2:

输入:root = [1]
输出:[[1]]
示例 3:

输入:root = []
输出:[]

提示:

树中节点数目在范围 [0, 2000] 内
-1000 <= Node.val <= 1000
BFS+队列:

/**
* Definition for a binary tree node.
* struct TreeNode {
*     int val;
*     TreeNode *left;
*     TreeNode *right;
*     TreeNode() : val(0), left(nullptr), right(nullptr) {}
*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
   vector<vector<int>> levelOrder(TreeNode* root) {
       queue<TreeNode*> que;
       vector<vector<int>> result;

       if (root != NULL)
           que.push(root);
       while (!que.empty()) {
           int size = que.size();
           vector<int> vec;

           for (int i = 0; i < size; i++) {
               TreeNode* node = que.front();
               que.pop();
               vec.push_back(node->val);
               if (node->left)
                   que.push(node->left);
               if (node->right)
                   que.push(node->right);
           }
           result.push_back(vec);
       }
       return result;
   }
};

107. 二叉树的层序遍历 II

给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

示例 1:
在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:[[15,7],[9,20],[3]]
示例 2:

输入:root = [1]
输出:[[1]]
示例 3:

输入:root = []
输出:[]

提示:

树中节点数目在范围 [0, 2000] 内
-1000 <= Node.val <= 1000

对比上一道题,只需反转最后的result:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
        queue<TreeNode*> que;
        vector<vector<int>> result;

        if (root != NULL)
            que.push(root);
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;

            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left)
                    que.push(node->left);
                if (node->right)
                    que.push(node->right);
            }
            result.push_back(vec);
           
        } 
        reverse(result.begin(), result.end());
        return result;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1449317.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

手动汉化unity编辑器,解决下载中文语言报错问题

手动汉化unity编辑器&#xff0c;解决下载中文语言报错问题 START 最近在下载支持微信小程序版本的编辑器时&#xff0c;中文语言包&#xff0c;一直无法下载。记录一下 手动汉化unity编辑器的方法 &#xff0c;帮助和我遇到同样问题的人。 解决方案 1. 下载汉化包 https:…

建模语言CellML初步

文章目录 简介洛伦兹吸引子仿真 简介 CellML是主打计算生理学的一个编程语言&#xff0c;擅长处理微分方程问题&#xff0c;并且内置了单位系统&#xff0c;是细胞层次的建模工具。openCOR为其运行环境&#xff0c;提供了舒适的代码编辑窗口&#xff0c;以及一系列IDE工具&…

QEMU使用步骤

1、安装虚拟机环境&#xff1a;ubuntu-16.04.7-desktop-amd64.iso,下载地址&#xff1a;Index of /ubuntu-releases/16.04.7/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 2、安装gcc-linaro-7.3.1-2018.05-x86_64_arm-linux-gnueabihf.tar.xz到/opt目录&#xf…

漫漫数学之旅020

文章目录 经典格言数学习题古今评注名人小传 - 尼尔斯玻尔 经典格言 专家就是这样一个人&#xff0c;在一个很狭小的领域里犯下一切可能犯的错误。——尼尔斯玻尔&#xff08;Niels Bohr&#xff09; 尼尔斯玻尔&#xff0c;这位量子物理界的巨头&#xff0c;以一句幽默且充满…

【Python】高级数据类型

&#x1f6a9; WRITE IN FRONT &#x1f6a9; &#x1f50e; 介绍&#xff1a;"謓泽"正在路上朝着"攻城狮"方向"前进四" &#x1f50e;&#x1f3c5; 荣誉&#xff1a;2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评…

几个经典金融理论

完整EA&#xff1a;Nerve Knife.ex4黄金交易策略_黄金趋势ea-CSDN博客 一、预期效用理论 预期效用理论是描述人们在做出决策时如何考虑风险和不确定性的一种理论。该理论最初由经济学家冯诺伊曼&#xff08;John von Neumann&#xff09;和奥斯卡摩根斯坦恩&#xff08;Oskar…

图像配准之HomographyNet

文章名称&#xff1a;Deep Image Homography Estimation&#xff0c;论文地址&#xff1a;https://arxiv.org/pdf/1606.03798.pdf&#xff0c;代码地址&#xff1a;GitHub - mazenmel/Deep-homography-estimation-Pytorch: Deep homography network with Pytorch 1、背景介绍 …

maven创建webapp+Freemarker组件的实现

下载安装配置maven Maven官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘123云盘为您提供Maven最新版正式版官方版绿色版下载,Maven安卓版手机版apk免费下载安装到手机,支持电脑端一键快捷安装https://www.123pan.com/s/9QRqVv-TcUY.html链接为3.6.2-3.6.3的版本 下载解…

【C++】类和对象(四)

前言&#xff1a;在类和对象中&#xff0c;我们走过了十分漫长的道路&#xff0c;今天我们将进一步学习类和对象&#xff0c;类和对象这块荆棘地很长&#xff0c;各位一起加油呀。 &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; 专栏分类:高质量&a…

《小强升职记:时间管理故事书》阅读笔记

目录 前言 一、你的时间都去哪儿了 1.1 你真的很忙吗 1.2 如何记录和分析时间日志 1.3 如何找到自己的价值观 二、无压工作法 2.1 传说中的“四象限法则 2.2 衣柜整理法 三、行动时遇到问题怎么办&#xff1f; 3.1 臣服与拖延 3.2 如何做到要事第一&#xff1f; 3.…

【碎片知识点】安装Linux系统 VMware与kali

天命&#xff1a;VMware就是可以运行操作系统的载体&#xff0c;kali就是Linux的其中一个分支 天命&#xff1a;Linux有两个分支版本&#xff1a;centos与ubuntu&#xff0c;kali底层就是ubuntu&#xff08;所有Linux用起来都差不多&#xff0c;没啥区别&#xff09; 天命&…

linux系统zabbix自动发现主机

自动发现主机 新的主机浏览器配置创建发现规则创建发现主机后动作 新的主机 rpm -Uvh https://repo.zabbix.com/zabbix/5.0/rhel/7/x86_64/zabbix-release-5.0-1.el7.noarch.rpm# yum clean allyum install zabbix-agentvim /etc/zabbix/zabbix_agentd.conf Server10.12.153.1…

C语言:内存分配---栈区、堆区、全局区、常量区和代码区

一、C语言内存分区 C语言内存分区示意图如下&#xff1a; 1. 栈区 栈区介绍 栈区由编译器自动分配释放&#xff0c;由操作系统自动管理&#xff0c;无须手动管理。栈区上的内容只在函数范围内存在&#xff0c;当函数运行结束&#xff0c;这些内容也会自动被销毁。栈区按内存…

微服务中台架构的设计与实现

本文将探讨微服务中台架构的设计与实现&#xff0c;介绍如何通过微服务的方式进行系统拆分和组合&#xff0c;构建灵活、可扩展且易于维护的中台架构&#xff0c;以加速企业的数字化转型和提升竞争力。 ## 1. 引言 随着企业规模的不断扩大和业务的日益复杂化&#xff0c;传统…

山西电力市场日前价格预测【2024-02-12】

日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2024-02-12&#xff09;山西电力市场全天平均日前电价为127.42元/MWh。其中&#xff0c;最高日前电价为369.24元/MWh&#xff0c;预计出现在18:45。最低日前电价为0.00元/MWh&#xff0c;预计出…

库函数strlen的实现

目录 一、原理二、思路三、实现 一、原理 库函数strlen的功能是求字符串长度&#xff0c;统计的是字符串中 \0 之前的字符的个数。 函数原型如下&#xff1a; size_t strlen ( const char * str );二、思路 参数str接收⼀个字符串的起始地址&#xff0c;然后开始统计字符串中…

WEB APIs(1)

变量声明const&#xff08;修饰常量&#xff09; const优先&#xff0c;如react&#xff0c;基本const&#xff0c; 对于引用数据类型&#xff0c;可用const声明&#xff0c;因为储存的是地址 何为APIs 可以使用js操作HTML和浏览器 分类&#xff1a;DOM&#xff08;文档对象…

C# Winform .net6自绘的圆形进度条

using System; using System.Drawing; using System.Drawing.Drawing2D; using System.Windows.Forms;namespace Net6_GeneralUiWinFrm {public class CircularProgressBar : Control{private int progress 0;private int borderWidth 20; // 增加的边框宽度public int Progr…

全闭环直播推流桌面分享远控系统

直播推流涉及多协议&#xff0c;多端技术栈和知识点&#xff0c;&#xff0c;想要做好并不容易&#xff0c;经过几年时间的迭代&#xff0c;终于小有成就&#xff0c;聚集了媒体服务器&#xff0c;实时会议sfu&#xff0c;远控kvm等功能。可以做一个音视频应用的瑞士小军刀。主…

为什么说技术进步很慢? —— 技术的先进性与其当下价值的不匹配

一、背景 技术进步是否缓慢是一个相对的概念&#xff0c;需要在不同的领域和时间段内进行分析。以下是一些不同领域中可能造成技术进步看似缓慢的原因&#xff1a; 1. **基础研究瓶颈**&#xff1a;许多先进技术的发展依赖于基础科学的突破&#xff0c;而这些突破往往需要长时…