KAJIMA CORPORATION CONTEST 2024(AtCoder Beginner Contest 340)ABCDEF 视频讲解

news2024/11/28 8:24:01

这场比较郁闷,C题短路,连续4次WA,导致罚时太多

A - Arithmetic Progression

Problem Statement

Print an arithmetic sequence with first term A A A, last term B B B, and common difference D D D.
You are only given inputs for which such an arithmetic sequence exists.

Constraints

1 ≤ A ≤ B ≤ 100 1 \leq A \leq B \leq 100 1AB100
1 ≤ D ≤ 100 1 \leq D \leq 100 1D100
There is an arithmetic sequence with first term A A A, last term B B B, and common difference D D D.
All input values are integers.

Input

The input is given from Standard Input in the following format:

A A A B B B D D D

Output

Print the terms of the arithmetic sequence with first term A A A, last term B B B, and common difference D D D, in order, separated by spaces.

Sample Input 1

3 9 2

Sample Output 1

3 5 7 9

The arithmetic sequence with first term 3 3 3, last term 9 9 9, and common difference 2 2 2 is ( 3 , 5 , 7 , 9 ) (3,5,7,9) (3,5,7,9).

Sample Input 2

10 10 1

Sample Output 2

10

The arithmetic sequence with first term 10 10 10, last term 10 10 10, and common difference 1 1 1 is ( 10 ) (10) (10).

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int A, B, C;

	cin >> A >> B >> C;

	for (int i = A; i <= B; i += C)
		cout << i << " ";

	return 0;
}

B - Append

Problem Statement

You have an empty sequence A A A. There are Q Q Q queries given, and you need to process them in the order they are given.

The queries are of the following two types:
1 x: Append x x x to the end of A A A.
2 k: Find the k k k-th value from the end of A A A. It is guaranteed that the length of A A A is at least k k k when this query is given.

Constraints

1 ≤ Q ≤ 100 1 \leq Q \leq 100 1Q100
In the first type of query, x x x is an integer satisfying 1 ≤ x ≤ 1 0 9 1 \leq x \leq 10^9 1x109.
In the second type of query, k k k is a positive integer not greater than the current length of sequence A A A.

Input

The input is given from Standard Input in the following format:

Q Q Q
q u e r y 1 \mathrm{query}_1 query1
q u e r y 2 \mathrm{query}_2 query2
⋮ \vdots
q u e r y Q \mathrm{query}_Q queryQ

Each query is in one of the following two formats:

1 1 1 x x x

2 2 2 k k k

Output

Print q q q lines, where q q q is the number of queries of the second type.

The i i i-th line should contain the answer to the i i i-th such query.

Sample Input 1

5
1 20
1 30
2 1
1 40
2 3

Sample Output 1

30
20

Initially, A A A is empty.
The first query appends 20 20 20 to the end of A A A, making A = ( 20 ) A=(20) A=(20).
The second query appends 30 30 30 to the end of A A A, making A = ( 20 , 30 ) A=(20,30) A=(20,30).
The answer to the third query is 30 30 30, which is the 1 1 1-st value from the end of A = ( 20 , 30 ) A=(20,30) A=(20,30).
The fourth query appends 40 40 40 to the end of A A A, making A = ( 20 , 30 , 40 ) A=(20,30,40) A=(20,30,40).
The answer to the fifth query is 20 20 20, which is the 3 3 3-rd value from the end of A = ( 20 , 30 , 40 ) A=(20,30,40) A=(20,30,40).

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int Q;

	cin >> Q;

	std::vector<int> S;
	while (Q --)
	{
		int Op, X;

		cin >> Op >> X;

		if (Op == 1)
			S.push_back(X);
		else
			cout << S[S.size() - X] << endl;
	}

	return 0;
}

C - Divide and Divide

Problem Statement

There is a single integer N N N written on a blackboard.

Takahashi will repeat the following series of operations until all integers not less than 2 2 2 are removed from the blackboard:
Choose one integer x x x not less than 2 2 2 written on the blackboard.
Erase one occurrence of x x x from the blackboard. Then, write two new integers ⌊ x 2 ⌋ \left \lfloor \dfrac{x}{2} \right\rfloor 2x and ⌈ x 2 ⌉ \left\lceil \dfrac{x}{2} \right\rceil 2x on the blackboard.
Takahashi must pay x x x yen to perform this series of operations.
Here, ⌊ a ⌋ \lfloor a \rfloor a denotes the largest integer not greater than a a a, and ⌈ a ⌉ \lceil a \rceil a denotes the smallest integer not less than a a a.
What is the total amount of money Takahashi will have paid when no more operations can be performed?

It can be proved that the total amount he will pay is constant regardless of the order in which the operations are performed.

Constraints

2 ≤ N ≤ 1 0 17 2 \leq N \leq 10^{17} 2N1017

Input

The input is given from Standard Input in the following format:

N N N

Output

Print the total amount of money Takahashi will have paid, in yen.

Sample Input 1

3

Sample Output 1

5

Here is an example of how Takahashi performs the operations:
Initially, there is one 3 3 3 written on the blackboard.
He chooses 3 3 3. He pays 3 3 3 yen, erases one 3 3 3 from the blackboard, and writes ⌊ 3 2 ⌋ = 1 \left \lfloor \dfrac{3}{2} \right\rfloor = 1 23=1 and ⌈ 3 2 ⌉ = 2 \left\lceil \dfrac{3}{2} \right\rceil = 2 23=2 on the blackboard.
There is one 2 2 2 and one 1 1 1 written on the blackboard.
He chooses 2 2 2. He pays 2 2 2 yen, erases one 2 2 2 from the blackboard, and writes ⌊ 2 2 ⌋ = 1 \left \lfloor \dfrac{2}{2} \right\rfloor = 1 22=1 and ⌈ 2 2 ⌉ = 1 \left\lceil \dfrac{2}{2} \right\rceil = 1 22=1 on the blackboard.
There are three 1 1 1s written on the blackboard.
Since all integers not less than 2 2 2 have been removed from the blackboard, the process is finished.
Takahashi has paid a total of 3 + 2 = 5 3 + 2 = 5 3+2=5 yen for the entire process, so print 5 5 5.

Sample Input 2

340

Sample Output 2

2888

Sample Input 3

100000000000000000

Sample Output 3

5655884811924144128

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>

using namespace std;

inline __int128 read()
{
	char ch = getchar();
	__int128 x = 0, cf = 1;
	while(ch < '0' || ch > '9') {
		if(ch == '-') cf = -1;
		ch = getchar();
	}
	while(ch >= '0' && ch <= '9') {
		x = (x << 3) + (x << 1) + (ch ^ 48);
		ch = getchar();
	}
	
	return x * cf;
}

void write(__int128 x)
{
    if(x<0)
        putchar('-'),x=-x;
    if(x>9)
        write(x/10);
    putchar(x%10+'0');
    return;
}

__int128 Quick_Pow(__int128 a, __int128 b)
{
	__int128 Result = 1;
	while (b)
	{
		if (b & 1) Result = Result * a;
		a = a * a;
		b >>= 1;
	}

	return Result;
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	__int128 N = read();

	__int128 T = 0, T2 = 0;
	while (Quick_Pow(2, T + 1) <= 4 * N) T ++;
	while (Quick_Pow(2, T2 + 1) <= 2 * N) T2 ++;
	__int128 Result = N * T - Quick_Pow(2, T2);

	write(Result);

	return 0;
}

D - Super Takahashi Bros.

Problem Statement

Takahashi is playing a game.
The game consists of N N N stages numbered 1 , 2 , … , N 1,2,\ldots,N 1,2,,N. Initially, only stage 1 1 1 can be played.
For each stage i i i ( 1 ≤ i ≤ N − 1 1\leq i \leq N-1 1iN1 ) that can be played, you can perform one of the following two actions at stage i i i:
Spend A i A_i Ai seconds to clear stage i i i. This allows you to play stage i + 1 i+1 i+1.
Spend B i B_i Bi seconds to clear stage i i i. This allows you to play stage X i X_i Xi.
Ignoring the times other than the time spent to clear the stages, how many seconds will it take at the minimum to be able to play stage N N N?

Constraints

2 ≤ N ≤ 2 × 1 0 5 2 \leq N \leq 2\times 10^5 2N2×105
1 ≤ A i , B i ≤ 1 0 9 1 \leq A_i, B_i \leq 10^9 1Ai,Bi109
1 ≤ X i ≤ N 1 \leq X_i \leq N 1XiN
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N
A 1 A_1 A1 B 1 B_1 B1 X 1 X_1 X1
A 2 A_2 A2 B 2 B_2 B2 X 2 X_2 X2
⋮ \vdots
A N − 1 A_{N-1} AN1 B N − 1 B_{N-1} BN1 X N − 1 X_{N-1} XN1

Output

Print the answer.

Sample Input 1

5
100 200 3
50 10 1
100 200 5
150 1 2

Sample Output 1

350

By acting as follows, you will be allowed to play stage 5 5 5 in 350 350 350 seconds.
Spend 100 100 100 seconds to clear stage 1 1 1, which allows you to play stage 2 2 2.
Spend 50 50 50 seconds to clear stage 2 2 2, which allows you to play stage 3 3 3.
Spend 200 200 200 seconds to clear stage 3 3 3, which allows you to play stage 5 5 5.

Sample Input 2

10
1000 10 9
1000 10 10
1000 10 2
1000 10 3
1000 10 4
1000 10 5
1000 10 6
1000 10 7
1000 10 8

Sample Output 2

90

Sample Input 3

6
1000000000 1000000000 1
1000000000 1000000000 1
1000000000 1000000000 1
1000000000 1000000000 1
1000000000 1000000000 1

Sample Output 3

5000000000

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int SIZE = 8e5 + 10;

int N;
int A[SIZE], B[SIZE], X[SIZE];
int h[SIZE], w[SIZE], e[SIZE], ne[SIZE], idx;
bool st[SIZE];
int dist[SIZE];

inline void add(int a, int b, int c)
{
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}

inline int Dijkstra(int start, int finish)
{
    memset(dist, 0x3f, sizeof dist);
    priority_queue<PII, vector<PII>, greater<PII>> heap;

    heap.push({0, start});
    st[start] = 1;

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int u = t.second, dis = t.first;

        for (int i = h[u]; ~i; i = ne[i])
            if (dist[e[i]] > w[i] + dis)
                dist[e[i]] = w[i] + dis, heap.push({dist[e[i]], e[i]});
    }

    if (dist[finish] == 0x3f3f3f3f) return -1;
    return dist[finish];
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	memset(h, -1, sizeof h);

	cin >> N;

	for (int i = 1; i < N; i ++)
	{
		cin >> A[i] >> B[i] >> X[i];
		add(i, i + 1, A[i]), add(i, X[i], B[i]);
	}

	cout << Dijkstra(1, N) << endl;

	return 0;
}

E - Mancala 2

Problem Statement

There are N N N boxes numbered 0 0 0 to N − 1 N-1 N1. Initially, box i i i contains A i A_i Ai balls.
Takahashi will perform the following operations for i = 1 , 2 , … , M i=1,2,\ldots,M i=1,2,,M in order:
Set a variable C C C to 0 0 0.
Take out all the balls from box B i B_i Bi and hold them in hand.
While holding at least one ball in hand, repeat the following process:
Increase the value of C C C by 1 1 1.
Put one ball from hand into box ( B i + C )   m o d   N (B_i+C) \bmod N (Bi+C)modN.
Determine the number of balls in each box after completing all operations.

Constraints

1 ≤ N ≤ 2 × 1 0 5 1 \leq N \leq 2\times 10^5 1N2×105
1 ≤ M ≤ 2 × 1 0 5 1 \leq M \leq 2\times 10^5 1M2×105
0 ≤ A i ≤ 1 0 9 0 \leq A_i \leq 10^9 0Ai109
KaTeX parse error: Expected 'EOF', got '&' at position 12: 0 \leq B_i &̲lt; N
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N M M M
A 0 A_0 A0 A 1 A_1 A1 … \ldots A N − 1 A_{N-1} AN1
B 1 B_1 B1 B 2 B_2 B2 … \ldots B M B_M BM

Output

Let X i X_i Xi be the number of balls in box i i i after completing all operations. Print X 0 , X 1 , … , X N − 1 X_0,X_1,\ldots,X_{N-1} X0,X1,,XN1 in this order, separated by spaces.

Sample Input 1

5 3
1 2 3 4 5
2 4 0

Sample Output 1

0 4 2 7 2

The operations proceed as follows:
Figure

Sample Input 2

3 10
1000000000 1000000000 1000000000
0 1 0 1 0 1 0 1 0 1

Sample Output 2

104320141 45436840 2850243019

Sample Input 3

1 4
1
0 0 0 0

Sample Output 3

1

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int SIZE = 2e5 + 10;

int N, M;
int A[SIZE], B[SIZE];
struct Segment
{
	struct Node
	{
		int l, r;
		LL Sum, Max, Min, Lazy;
	}Tree[SIZE << 2];
	void Pushup(int u)
	{
		Tree[u].Sum = Tree[u << 1].Sum + Tree[u << 1 | 1].Sum;
		Tree[u].Max = max(Tree[u << 1].Max, Tree[u << 1 | 1].Max);
		Tree[u].Min = min(Tree[u << 1].Min, Tree[u << 1 | 1].Min);
	}
	void Pushdown(int u)
	{
		if (Tree[u].Lazy)
		{
			Tree[u << 1].Max += Tree[u].Lazy;
			Tree[u << 1].Min += Tree[u].Lazy;
			Tree[u << 1].Sum += (LL)(Tree[u << 1].r - Tree[u << 1].l + 1) * Tree[u].Lazy;
			Tree[u << 1].Lazy += Tree[u].Lazy;
			Tree[u << 1 | 1].Max += Tree[u].Lazy;
			Tree[u << 1 | 1].Min += Tree[u].Lazy;
			Tree[u << 1 | 1].Sum += (LL)(Tree[u << 1 | 1].r - Tree[u << 1 | 1].l + 1) * Tree[u].Lazy;
			Tree[u << 1 | 1].Lazy += Tree[u].Lazy;
			Tree[u].Lazy = 0;
		}
	}
	void Build(int u, int l, int r)
	{
		Tree[u] = {l, r};
		if (l == r) return;
		int mid = l + r >> 1;
		Build(u << 1, l, mid), Build(u << 1 | 1, mid + 1, r);
	}
	void Modify(int u, int l, int r, int d)
	{
		if (Tree[u].l >= l && Tree[u].r <= r)
		{
			Tree[u].Sum += (LL)(Tree[u].r - Tree[u].l + 1) * d;
			Tree[u].Max += d, Tree[u].Min += d;
			Tree[u].Lazy += d;
			return;
		}

		Pushdown(u);
		int mid = Tree[u].l + Tree[u].r >> 1;
		if (mid >= l) Modify(u << 1, l, r, d);
		if (mid < r) Modify(u << 1 | 1, l, r, d);
		Pushup(u);
	}
	int Query(int u, int l, int r, int k)
	{
		if (Tree[u].l >= l && Tree[u].r <= r)
		{
			if (k == 1) return Tree[u].Sum;
			else if (k == 2) return Tree[u].Max;
			else return Tree[u].Min;
		}

		Pushdown(u);
		long long mid = Tree[u].l + Tree[u].r >> 1, Result;
		if (k == 1) Result = 0;
		else if (k == 2) Result = -1e18;
		else Result = 1e18;
		if (mid >= l) Result = Query(u << 1, l, r, k);
		if (mid < r)
		{
			if (k == 1) Result += Query(u << 1 | 1, l, r, k);
			else if (k == 2) Result = max(Result, Query(u << 1 | 1, l, r, k));
			else Result = min(Result, Query(u << 1 | 1, l, r, k));
		}

		return Result;
	}
	int Sum(int l, int r) { return Query(1, l, r, 1); }
	int Max(int l, int r) { return Query(1, l, r, 2); }
	int Min(int l, int r) { return Query(1, l, r, 3); }
}Tool;

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> N >> M;

	Tool.Build(1, 1, N);
	for (int i = 1; i <= N; i ++)
		cin >> A[i], Tool.Modify(1, i, i, A[i]);
	for (int i = 1; i <= M; i ++)
		cin >> B[i], B[i] ++;

	for (int i = 1; i <= M; i ++)
	{
		int X = Tool.Sum(B[i], B[i]), Turn = X / N, Rest = X % N;
		Tool.Modify(1, 1, N, Turn);
		if (Rest && B[i] + Rest > N)
		{
			if (B[i] + 1 <= N) Tool.Modify(1, B[i] + 1, N, 1);
			Tool.Modify(1, 1, Rest - N + B[i], 1);
		}
		else if (Rest) Tool.Modify(1, B[i] + 1, B[i] + Rest, 1);
		Tool.Modify(1, B[i], B[i], -X);
	}

	for (int i = 1; i <= N; i ++)
		cout << Tool.Sum(i, i) << " ";

	return 0;
}

F - S = 1

Problem Statement

You are given integers X X X and Y Y Y, which satisfy at least one of X ≠ 0 X \neq 0 X=0 and Y ≠ 0 Y \neq 0 Y=0.

Find a pair of integers ( A , B ) (A, B) (A,B) that satisfies all of the following conditions. If no such pair exists, report so.
− 1 0 18 ≤ A , B ≤ 1 0 18 -10^{18} \leq A, B \leq 10^{18} 1018A,B1018
The area of the triangle with vertices at points ( 0 , 0 ) , ( X , Y ) , ( A , B ) (0, 0), (X, Y), (A, B) (0,0),(X,Y),(A,B) on the x y xy xy-plane is 1 1 1.

Constraints

− 1 0 17 ≤ X , Y ≤ 1 0 17 -10^{17} \leq X, Y \leq 10^{17} 1017X,Y1017
( X , Y ) ≠ ( 0 , 0 ) (X, Y) \neq (0, 0) (X,Y)=(0,0)
X X X and Y Y Y are integers.

Input

The input is given from Standard Input in the following format:

X X X Y Y Y

Output

If there is a pair of integers ( A , B ) (A, B) (A,B) that satisfies the conditions, print it in the following format:

A A A B B B

Otherwise, print -1.

Sample Input 1

3 5

Sample Output 1

1 1

The area of the triangle with vertices at points ( 0 , 0 ) , ( 3 , 5 ) , ( 1 , 1 ) (0, 0), (3, 5), (1, 1) (0,0),(3,5),(1,1) is 1 1 1. Thus, ( A , B ) = ( 1 , 1 ) (A, B) = (1, 1) (A,B)=(1,1) satisfies the conditions.

Sample Input 2

-2 0

Sample Output 2

0 1

Sample Input 3

8752654402832944 -6857065241301125

Sample Output 3

-1

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

int Exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }

    int d = Exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int X, Y;

	cin >> X >> Y;

	if (((2 % __gcd(X, Y) + abs(__gcd(X, Y))) % __gcd(X, Y)) != 0)
		cout << -1 << endl;
	else
	{
		int A, B;
		int d = Exgcd(Y, X, A, B);
		cout << A * (2 / abs(d)) << " " << (-B) * (2 / abs(d)) << endl;
	}

	return 0;
}

G - Leaf Color

G题还没研究,等后面研究下。

视频题解

Atcoder Beginner Contest 340(A ~ F)


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1448384.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【论文模型讲解】CLIP(Learning Transferable Visual Models From Natural Language Supervision)

文章目录 前言0 摘要1 Introduction and Motivating Work2 Approach2.0 模型整体结构2.1 数据集2.2 选择一种高效的预训练方法2.3 模型选择与缩放2.4 训练 3 实验3.1 zero-shot 迁移3.1.1 与 Visual N-grams 对比3.1.2 Prompt Engineering and Ensembling3.1.3 zero-shot CLIP …

【数据结构】哈希桶封装出map和set

利用之前的哈希桶封装出unordered_map和unordered_set。 这个封装并不简单&#xff0c;迭代器的使用&#xff0c;模板参数的繁多&#xff0c;需要我们一层一层封装。 map是一个k - v类型&#xff0c;set是k类型&#xff0c;那么就明确了如果需要封装&#xff0c;底层的tables…

产品经理面试题解析:业务架构是通往成功的关键吗?

大家好&#xff0c;我是小米&#xff01;今天我要和大家聊的是产品经理面试中的一个热门话题&#xff1a;“业务架构”&#xff01;相信不少小伙伴在准备面试的时候都会遇到这个问题&#xff0c;究竟什么是业务架构&#xff1f;它又与产品经理的工作有着怎样的关系呢&#xff1…

统计图饼图绘制方法(C语言)

统计图饼图绘制方法&#xff08;C语言&#xff09; 常用的统计图有条形图、柱形图、折线图、曲线图、饼图、环形图、扇形图。 前几类图比较容易绘制&#xff0c;饼图绘制较难。今值此介绍饼图的绘制方法。 本方法采用C语言的最基本功能&#xff1a; &#xff08; 1.&#xff09…

【AI视野·今日NLP 自然语言处理论文速览 第七十九期】Thu, 18 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Thu, 18 Jan 2024 Totally 35 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Deciphering Textual Authenticity: A Generalized Strategy through the Lens of Large Language Semantics …

vue3+ts+vite+uniapp项目常见问题

vue3tsvite中""路径失效的问题 ""需要进行配置&#xff1a; 首先npm install types/node --save-dev&#xff08;需要用到node其中的path&#xff09;接着在vite.config.ts配置文件中进行配置&#xff1a; 引入 import path from ‘path’&#xff0c;然…

进阶C语言-动态内存管理

动态内存管理 &#x1f388;1.为什么存在动态内存分配&#x1f388;2.动态内存函数的介绍&#x1f52d;2.1malloc和free函数&#x1f52d;2.2calloc函数&#x1f52d;2.3realloc函数 &#x1f388;3.常见的动态内存错误&#x1f52d;3.1对NULL指针的解引用操作&#x1f52d;3.2…

2024.2.9

作业1 请使用递归实现n&#xff01; #include<stdio.h> #include<string.h> #include<stdlib.h>int fun(int m) {if(m0)return 1;else{return m*fun(m-1);} } int main(int argc, const char *argv[]) {int m;printf("please enter m:");scanf(&…

TCP高频知识点

本篇文章主要讲述一下在面试过程中TCP的高频知识点 1.TCP三次握手流程图: 客户端发送一个SYN&#xff08;同步&#xff09;报文段给服务器&#xff0c;选择一个初始序列号&#xff0c;并设置SYN标志位为1。服务器接收到客户端的SYN报文段后&#xff0c;回复一个ACK&#xff08…

Linux_进程概念

硬件系统 软件系统 进程概念 进程状态 孤儿进程 进程优先级 一.硬件系统 1.1 冯诺依曼体系结构 数学家冯诺依曼提出了计算机制造的三个基本原则&#xff0c;即采用二进制逻辑、程序存储执行以及计算机由五个部分组成&#xff08;运算器、控制器、存储器、输入设备、输出设备&a…

MATLAB实现朴素贝叶斯分类

朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立,从而简化了计算复杂性。该算法常用于文本分类、垃圾邮件过滤、情感分析等应用场景。 MATLAB实现鸢尾花数据集分类代码如下: clear load fisheriris X = meas(:,1:2); Y = species; labels…

勒索病毒最新变种.target勒索病毒来袭,如何恢复受感染的数据?

导言&#xff1a; 在当今数字化时代&#xff0c;数据被视为企业和个人最重要的资产之一。然而&#xff0c;随着技术的进步&#xff0c;网络安全威胁也在不断演变。其中&#xff0c;勒索病毒是一种极具破坏性的威胁&#xff0c;而".target"勒索病毒是近期备受关注的一…

【AI视野·今日CV 计算机视觉论文速览 第293期】Fri, 19 Jan 2024

AI视野今日CS.CV 计算机视觉论文速览 Fri, 19 Jan 2024 Totally 103 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computer Vision Papers ParaHome: Parameterizing Everyday Home Activities Towards 3D Generative Modeling of Human-Object Interactions Aut…

NSSCTF Round#18 RE GenshinWishSimulator WP

恶搞原神抽卡模拟器 看到软件的界面&#xff0c;大致有三种思路&#xff1a; 修改石头数量一直抽&#xff0c;如果概率正常肯定能抽到&#xff08;但是估计设置的概率是0&#xff09;在源码里找flag的数据把抽卡概率改成100%直接抽出来 Unity逆向&#xff0c;根据经验应该dnsp…

软考26-上午题-图3

一、图的遍历 从图中的某个顶点出发&#xff0c;沿着某条搜索路径对图中的所有顶点进行访问&#xff0c;且&#xff0c;只访问一次的过程。 图的遍历比树的遍历复杂&#xff0c;因为要避免对顶点进行重复访问&#xff0c;所以在图的遍历过程中&#xff0c;必须记下每个已访问…

文献速递:肿瘤分割---- 弱监督肝肿瘤分割,使用Couinaud区段标注

文献速递&#xff1a;肿瘤分割---- 弱监督肝肿瘤分割&#xff0c;使用Couinaud区段标注 01 文献速递介绍 肝癌是世界上导致癌症死亡的主要原因之一&#xff0c;也是第二大常见的癌症死因。本稿件于2021年10月28日收到&#xff0c;2021年11月24日修订&#xff0c;2021年12月1…

详解Vue文件结构+实现一个简单案例

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…

thinkphp6入门(20)-- 如何上传图片、文件

1. 配置文件 设置上传的路径 对应文件夹 2. 前端 <div class"card-body"><h1 class"card-title">用户头像</h1><img src"../../../uploads/{$user.avatar_photo_path}" alt"avatar" height"100"/&g…

ICLR 2024 | Harvard FairSeg:第一个研究分割算法公平性的大型医疗分割数据集

近年来&#xff0c;人工智能模型的公平性问题受到了越来越多的关注&#xff0c;尤其是在医学领域&#xff0c;因为医学模型的公平性对人们的健康和生命至关重要。高质量的医学公平性数据集对促进公平学习研究非常必要。现有的医学公平性数据集都是针对分类任务的&#xff0c;而…

【开源】JAVA+Vue.js实现海南旅游景点推荐系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户端2.2 管理员端 三、系统展示四、核心代码4.1 随机景点推荐4.2 景点评价4.3 协同推荐算法4.4 网站登录4.5 查询景点美食 五、免责说明 一、摘要 1.1 项目介绍 基于VueSpringBootMySQL的海南旅游推荐系统&#xff…