机器学习:过拟合和欠拟合的介绍与解决方法

news2024/12/25 23:42:22

在这里插入图片描述

过拟合和欠拟合的表现和解决方法。

其实除了欠拟合和过拟合,还有一种是适度拟合,适度拟合就是我们模型训练想要达到的状态,不过适度拟合这个词平时真的好少见。

过拟合

过拟合的表现

模型在训练集上的表现非常好,但是在测试集、验证集以及新数据上的表现很差,损失曲线呈现一种高方差,低偏差状态。(高方差指的是训练集误差较低,而测试集误差比训练集大较多)

过拟合的原因

从两个角度去分析:

  1. 模型的复杂度:模型过于复杂,把噪声数据的特征也学习到模型中,导致模型泛化性能下降
  2. 数据集规模大小:数据集规模相对模型复杂度来说太小,使得模型过度挖掘数据集中的特征,把一些不具有代表性的特征也学习到了模型中。例如训练集中有一个叶子图片,该叶子的边缘是锯齿状,模型学习了该图片后认为叶子都应该有锯齿状边缘,因此当新数据中的叶子边缘不是锯齿状时,都判断为不是叶子。

过拟合的解决方法

  1. 获得更多的训练数据:使用更多的训练数据是解决过拟合问题最有效的手段,因为更多的样本能够让模型学习到更多更有效的特征,减少噪声的影响。

    当然直接增加实验数据在很多场景下都是没那么容易的,因此可以通过数据扩充技术,例如对图像进行平移、旋转和缩放等等。

    除了根据原有数据进行扩充外,还有一种思路是使用非常火热的**生成式对抗网络 GAN **来合成大量的新训练数据。

    还有一种方法是使用迁移学习技术,使用已经在更大规模的源域数据集上训练好的模型参数来初始化我们的模型,模型往往可以更快地收敛。但是也有一个问题是,源域数据集中的场景跟我们目标域数据集的场景差异过大时,可能效果会不太好,需要多做实验来判断。

  2. 降低模型复杂度:在深度学习中我们可以减少网络的层数,改用参数量更少的模型;在机器学习的决策树模型中可以降低树的高度、进行剪枝等。

  3. 正则化方法如 L2 将权值大小加入到损失函数中,根据奥卡姆剃刀原理,拟合效果差不多情况下,模型复杂度越低越好。至于为什么正则化可以减轻过拟合这个问题可以看看这个博客,挺好懂的.。

    添加BN层(这个我们专门在BN专题中讨论过了,BN层可以一定程度上提高模型泛化性能)

    使用dropout技术(dropout在训练时会随机隐藏一些神经元,导致训练过程中不会每次都更新(预测时不会发生dropout),最终的结果是每个神经元的权重w都不会更新的太大,起到了类似L2正则化的作用来降低过拟合风险。)

  4. Early Stopping:Early stopping便是一种迭代次数截断的方法来防止过拟合的方法,即在模型对训练数据集迭代收敛之前停止迭代来防止过拟合。

    Early stopping方法的具体做法是:在每一个Epoch结束时(一个Epoch集为对所有的训练数据的一轮遍历)计算validation data的accuracy,当accuracy不再提高时,就停止训练。这种做法很符合直观感受,因为accurary都不再提高了,在继续训练也是无益的,只会提高训练的时间。那么该做法的一个重点便是怎样才认为validation accurary不再提高了呢?并不是说validation accuracy一降下来便认为不再提高了,因为可能经过这个Epoch后,accuracy降低了,但是随后的Epoch又让accuracy又上去了,所以不能根据一两次的连续降低就判断不再提高。一般的做法是,在训练的过程中,记录到目前为止最好的validation accuracy,当连续10次Epoch(或者更多次)没达到最佳accuracy时,则可以认为accuracy不再提高了。

  5. 集成学习方法:集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险,例如Bagging方法。

    如DNN可以用Bagging的思路来正则化。首先我们要对原始的m个训练样本进行有放回随机采样,构建N组m个样本的数据集,然后分别用这N组数据集去训练我们的DNN。即采用我们的前向传播算法和反向传播算法得到N个DNN模型的W,b参数组合,最后对N个DNN模型的输出用加权平均法或者投票法决定最终输出。不过用集成学习Bagging的方法有一个问题,就是我们的DNN模型本来就比较复杂,参数很多。现在又变成了N个DNN模型,这样参数又增加了N倍,从而导致训练这样的网络要花更加多的时间和空间。因此一般N的个数不能太多,比如5-10个就可以了。

  6. 交叉检验,如S折交叉验证,通过交叉检验得到较优的模型参数,其实这个跟上面的Bagging方法比较类似,只不过S折交叉验证是随机将已给数据切分成S个互不相交的大小相同的自己,然后利用S-1个子集的数据训练模型,利用余下的子集测试模型;将这一过程对可能的S种选择重复进行;最后选出S次评测中平均测试误差最小的模型。

欠拟合

欠拟合的表现

模型无论是在训练集还是在测试集上的表现都很差,损失曲线呈现一种高偏差,低方差状态。(高偏差指的是训练集和验证集的误差都较高,但相差很少)

欠拟合的原因

同样可以从两个角度去分析:

  1. 模型过于简单:简单模型的学习能力比较差
  2. 提取的特征不好:当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合

欠拟合的解决方法

  1. 增加模型复杂度:如线性模型增加高次项改为非线性模型、在神经网络模型中增加网络层数或者神经元个数、深度学习中改为使用参数量更多更先进的模型等等。
  2. 增加新特征:可以考虑特征组合等特征工程工作(这主要是针对机器学习而言,特征工程还真不太了解……)
  3. 如果损失函数中加了正则项,可以考虑减小正则项的系数 λ \lambda λ

参考资料

过拟合与欠拟合及方差偏差 (这个博客总结地很好,可以看看)
机器学习+过拟合和欠拟合+方差和偏差
如何判断欠拟合、适度拟合、过拟合

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1445247.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小程序-上传图片功能

技术前置: 1.框架采用colorUI 2.原生开发 功能: 上传图片 1.上传已经拍摄的图片 2.实时拍摄上传 3.设置上传图片数量,每次上传数量 4.上传等待 ChooseImage() {if(this.data.imgList.length>4){_this.ErrorEvent("最多上传4…

MMKV:轻巧高效的跨平台键值存储解决方案

MMKV:轻巧高效的跨平台键值存储解决方案 引言 在移动应用的开发中,数据存储是一个至关重要的环节。随着移动应用的普及和功能的增多,应用需要存储和管理各种类型的数据,包括用户配置信息、缓存数据、临时状态等。传统的数据存储…

【深度学习每日小知识】全景分割

全景分割 全景分割是一项计算机视觉任务,涉及将图像或视频分割成不同的对象及其各自的部分,并用相应的类别标记每个像素。与传统的语义分割相比,它是一种更全面的图像分割方法,传统的语义分割仅将图像划分为类别,而不…

浅谈路由器交换结构

一、路由器技术概述 路由器(Router)是连接两个或多个网络的硬件设备,在网络间起网关的作用,是读取每一个数据包中的地址然后决定如何传送的专用智能性的网络设备。它能够理解不同的协议,例如某个局域网使用的以太网协议…

leetcode(矩阵)74. 搜索二维矩阵(C++详细解释)DAY7

文章目录 1.题目示例提示 2.解答思路3.实现代码结果 4.总结 1.题目 给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中…

《CSS 简易速速上手小册》第2章:CSS 布局与定位(2024 最新版)

文章目录 2.1 Flexbox:灵活的布局解决方案2.1.1 基础知识2.1.2 重点案例:创建一个响应式导航菜单2.1.3 拓展案例 1:卡片布局2.1.4 拓展案例 2:中心对齐的登录表单 2.2 Grid 布局:网格系统的魔力2.2.1 基础知识2.2.2 重…

Apache网站部署

站点添加及linux防火墙和selinux启动和停止 apache站点添加 linux系统防火墙和selinux起停 1、防火墙firewall操作 查看防火墙的状态,如下(默认开启): systemctl status firewalld 关闭服务 systemctl stop firewalld 关闭…

PySpark(四)PySpark SQL、Catalyst优化器、Spark SQL的执行流程、Spark新特性

目录 PySpark SQL 基础 SparkSession对象 DataFrame入门 DataFrame构建 DataFrame代码风格 DSL SQL SparkSQL Shuffle 分区数目 DataFrame数据写出 Spark UDF Catalyst优化器 Spark SQL的执行流程 Spark新特性 自适应查询(SparkSQL) 动态合并 动态调整Join策略 …

【数据结构】哈希表的开散列和闭散列模拟

哈希思想 在顺序和树状结构中,元素的存储与其存储位置之间是没有对应关系,因此在查找一个元素时,必须要经过多次的比较。 顺序查找的时间复杂度为0(N),树的查找时间复杂度为log(N)。 我们最希望的搜索方式:通过元素…

Mybatis Day02

增删改查 环境准备 创建一个emp表创建一个新的springboot工程,选择mysql、lombok、mybatis依赖application.properties中引入数据库连接信息创建对应的实体类Emp准备Mapper接口EmpMapper,mapper代表程序运行时自动创建接口的代理对象,并放入…

Linux下的容器化技术:从入门到实践

你是否曾经遇到过这样的困境:在不同的环境中部署应用程序时,总是因为各种依赖关系和环境配置问题而头痛不已?如果有的话,那么容器化技术将是你的救星!在Linux系统下,容器化技术以其轻量级、隔离性和可移植性…

蓝桥杯每日一题------背包问题(二)

前言 本次讲解背包问题的一些延申问题,新的知识点主要涉及到二进制优化,单调队列优化DP,树形DP等。 多重背包 原始做法 多重背包的题意处在01背包和完全背包之间,因为对于每一个物品它规定了可选的个数,那么可以考虑…

Spring 如何解决循环依赖?Spring三级缓存

什么是循环依赖 说白是一个或多个对象实例之间存在直接或间接的依赖关系,这种依赖关系构成了构成一个环形调用。 自己依赖自己 两个对象间的依赖关系 多个对象间的依赖关系 Spring出现循环依赖的场景 单例的setter注入 Service public class A {Resourceprivate…

【精选】java多态进阶——多态练习测试

🍬 博主介绍👨‍🎓 博主介绍:大家好,我是 hacker-routing ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【python】 【VulnHub靶场复现】【面试分析】 🎉点赞➕评论➕收藏…

InternLM大模型实战-4.XTuner大模型低成本微调实战

文章目录 前言笔记正文XTuner支持模型和数据集 微调原理跟随文档学习快速上手自定义微调准备数据准备配置文件 MS-Agent微调 前言 本文是对于InternLM全链路开源体系系列课程的学习笔记。【XTuner 大模型单卡低成本微调实战】 https://www.bilibili.com/video/BV1yK4y1B75J/?…

【MySQL进阶之路】生产案例:大量数据刷盘导致的数据库性能抖动问题优化

欢迎关注公众号(通过文章导读关注:【11来了】),及时收到 AI 前沿项目工具及新技术的推送! 在我后台回复 「资料」 可领取编程高频电子书! 在我后台回复「面试」可领取硬核面试笔记! 文章导读地址…

从汇编角度解释线程间互斥-mutex互斥锁与lock_guard的使用

多线程并发的竞态问题 我们创建三个线程同时进行购票&#xff0c;代码如下 #include<iostream> #include<thread> #include<list> using namespace std; //总票数 int ticketCount100; //售票线程 void sellTicket(int idx) {while(ticketCount>0){cou…

从零开始实现消息队列(二)

从零开始实现消息队列 .核心API交换机类型持久化网络通信Connection和Channel 消息应答模块划分 . 核心API 对于Broker来说,要实现以下核心API,通过这些API来实现消息队列的基本功能. 创建队列(queueDeclare)销毁队列(queueDelete)创建交换机(exchangeDeclare)销毁交换机(exc…

第4集《佛说四十二章经》

请大家打开讲议第四面&#xff0c;第一章&#xff0c;出家证果。 佛言&#xff1a;辞亲出家&#xff0c;识心达本&#xff0c;解无为法&#xff0c;名曰沙门。 在经文的刚开始啊&#xff0c;佛陀把修道的沙门提出了两个基本的条件&#xff1a; 第一个是辞亲出家&#xff0c;…

【Linux技术宝典】Linux入门:揭开Linux的神秘面纱

文章目录 官网Linux 环境的搭建方式一、什么是Linux&#xff1f;二、Linux的起源与发展三、Linux的核心组件四、Linux企业应用现状五、Linux的发行版本六、为什么选择Linux&#xff1f;七、总结 Linux&#xff0c;一个在全球范围内广泛应用的开源操作系统&#xff0c;近年来越来…