【算法】排序详解(快速排序,堆排序,归并排序,插入排序,希尔排序,选择排序,冒泡排序)

news2025/1/11 7:00:03

目录

排序的概念:

排序算法的实现:

插入排序:

希尔排序:

选择排序:

堆排序:

冒泡排序:

快速排序:

快速排序的基本框架:

1.Hoare法

2. 挖坑法

3.前后指针法

 快排的优化:

1. 三数取中法选key

2. 小区间使用插入排序

优化代码:

常见问题:

归并排序:

总结:

结语:


排序的概念:

排序:

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性:

假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持 不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳 定的;否则称为不稳定的(稳定可以转换成不稳定的,不稳定不可以转换成稳定的)。

内部排序:

数据元素全部放在内存中的排序。

外部排序:

数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

常见的排序算法:

直接插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序。

排序算法的实现:

说明:由于swap函数经常出现,为了使文章更加整洁,这里给出源码,下文直接调用不在说明。

 private static void swap(int[] array,int i,int j){
        int tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;
    }

插入排序:

思路:在待排序的元素中,假设前n-1个元素已有序,现将第n个元素插入到前面已经排好的序列中,使得前n个元素有序。按照此法对所有元素进行插入,直到整个序列有序。

动图演示如下:

代码实现如下:

 public static void insertSort(int[] array){
        for(int i = 1;i < array.length; i++){
            int j = i-1;
            int tmp = array[i];
            for(;j >= 0; j--){
                if(array[j] > tmp){
                    array[j+1] = array[j];
                }else{
                    break;
                }
            }
            array[j+1] = tmp;
        }
    }

结果演示:

直接插入排序的特性总结:

1. 元素集合越接近有序,直接插入排序算法的时间效率越高

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1),它是一种稳定的排序算法

4. 稳定性:稳定

希尔排序:

思路:希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成多个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达 =1时,所有记录在统一组内排好序。

动图演示:

代码实现如下:

在shellSort里面确定组的大小,在shell里面进行排序,通过计算确定gap的关系,间隔运行,一次通过。

 public static void shellSort(int[] array){
        int gap = array.length;
        while(gap > 1){
            gap /= 2;
            shell(array,gap);
        }
    }
    public static void shell(int[] array,int gap){
        for(int i = gap; i < array.length; i++){
            int j = 0;
            j = i-gap;
            int tmp = array[i];
            for(;j >= 0;j -= gap){
                if(array[j] > tmp){
                    array[j+gap] = array[j];
                }else{
                    break;
                }
            }
            array[j+gap] = tmp;
        }
    }

结果演示:

希尔排序的特性总结:

1. 希尔排序是对直接插入排序的优化。

2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很 快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。

3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排 序的时间复杂度都不固定。

4. 稳定性:不稳定

选择排序:

思路:

(1)在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素。

(2)若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换。

(3)在剩余的array[i]--array[n-2](array[i+1]--array[n-1])集合中,重复上述步骤,直到集合剩余1个元素。

动图演示:

代码实现如下:

 //选择排序
    public static void selectSort(int[] array){
        for(int i = 0;i < array.length-1; i++){
            int minIndex = i;
            for(int j = i+1;j < array.length; j++){
                if(array[j] < array[minIndex]){
                    minIndex = j;
                }
            }
            swap(array,i,minIndex);
        }
    }
    private static void swap(int[] array,int i,int j){
        int tmp = array[i];
        array[i] = array[j];
        array[j] = tmp;

    }

结果演示:

选择排序的特性总结 :

1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1)

4. 稳定性:不稳定

堆排序:

思路:堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。 

动图演示:

代码实现如下:

从小到大用大根堆

从大到小用小根堆

下面代码为大根堆

 public static void heapSort(int[] array){
        createBigHeap(array);
        int end = array.length-1;
        while(end > 0){
            swap(array,0,end);
            siftDown(array,0,end);
            end--;
        }
    }
    private static void createBigHeap(int[] array){
        for(int parent = (array.length - 1 -1)/2; parent >= 0; parent--){
            siftDown(array,parent,array.length);
        }
    }
    private static void siftDown(int[] array,int parent,int end){
        int child = parent*2+1;
        while(child < end) {
            if (child + 1 < end && array[child] < array[child + 1]) {
                child++;
            }
            if (array[child] > array[parent]) {
                swap(array, child, parent);
                parent = child;
                child = parent * 2 + 1;
            } else {
                break;
            }
        }
    }

 结果演示:

堆排序的特性总结:

1. 堆排序使用堆来选数,效率就高了很多。

2. 时间复杂度:O(N*logN)

3. 空间复杂度:O(1)

4. 稳定性:不稳定 

冒泡排序:

简单就不给思路了

动图演示:

 代码实现如下:

public static void bubbleSort(int[] array){
        for(int i = 0; i < array.length - 1; i++){
            boolean flg = false;
            for(int j = 0; j < array.length-1-i; j++){
                if(array[j] > array[j+1]){
                    swap(array,j,j+1);
                    flg = true;
                }
            }
            if(flg == false){
                return;
            }
        }
    }

 结果演示:

冒泡排序的特性总结:

1. 冒泡排序是一种非常容易理解的排序

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1)

4. 稳定性:稳定 

快速排序:

思路:任取待排序元素序列中的某元 素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

快速排序的基本框架:

 //快排的框架
    public static void quickSort(int[] array,int left,int right){
        if(right <= left){
            return;
        }
        int div = partition(array,left,right);
        quickSort(array,left,div-1);
        quickSort(array,div+1,right);
    }

这是还没优化的。

partition可以得到left和right相遇的下标。

关于partition有三种求法分别是Hoare版,挖坑法,前后指针。

其中最常用的是挖坑法。

1.Hoare法

动图如下:

代码实现: 

 //Hoare
    private static int partition(int[] array,int left,int right){
        int i = left;
        int j = right;
        int pivot = array[left];
        while(j > i){
            while(j > i && array[j] >= pivot){
                j--;
            }
            while(j > i && array[i] <= pivot){
                i++;
            }
            swap(array,i,j);
        }
        swap(array,i,left);
        return i;
    }

2. 挖坑法

动图如下:

 代码实现: 

//挖坑法
    private static int partition(int[] array,int left,int right){
        int i = left;
        int j = right;
        int pivot = array[left];
        while(j > i){
            while(j > i && array[j] >= pivot){
                j--;
            }
            array[i] = array[j];
            while(j > i && array[i] <= pivot){
                i++;
            }
            array[j] = array[i];
        }
        array[i] = pivot;
        return i;
    }

3.前后指针法

代码如下:

 //前后指针法
    private static int partition(int[] array,int left,int right){
        int prev = left;
        int cur = left+1;
        while(cur <= right){
            if(array[cur] < array[left] && array[++prev] != array[cur]){
                swap(array,cur,prev);
            }
            cur++;
        }
        swap(array,prev,left);
        return prev;
    }

 快排的优化:

1. 三数取中法选key

使用该优化方法可以有效减少当数组有序时变成单叉树的时间复杂度。

基本思路:选取数组中第一个数,中间数和最后一个数比较大小,将其中中间值和最左边交换,这样可以使mid左后两边数组个数尽可能相等。

代码如下:

private static int middleNum(int[] array,int left,int right){
        int mid = left + ((right - left) >> 1);
        if(array[left] < array[right]){
            if(array[mid] < array[left]){
                return left;
            }else if(array[mid] < array[right]){
                return mid;
            }else{
                return right;
            }
        }else{
            if(array[mid] < array[right]){
                return right;
            }else if(array[mid] < array[left]){
                return mid;
            }else{
                return left;
            }
        }
    }
2. 小区间使用插入排序

思路:我们直到插入排序在数组接近有序时是非常快的,而快排最后在堆上调用的空间是非常大的,故在小区间上使用插入排序可以达到优化的效果。

代码如下:

//优化1
    if(right - left +1 <= 15){
        insertSort2(array,left,right);
        return;
    }
    private static void insertSort2(int[] array,int left,int right){
        if(left >= right){
            return;
        }
        for(int i = 1 + left;i <= right;i++){
            int tmp = array[i];//都定义可读性好
            int j = i-1;
            for(;j >= left;j--){
                if(array[j] > tmp){
                    array[j+1] = array[j];
                }else{
                    break;
                }
            }
            array[j+1] = tmp;
        }
    }
优化代码:

为节省文章长度,下面个代码在上面给出,下面我就不给总代码了(抱歉)。

public static void quickSort(int[] array,int left,int right){
        if(right <= left){
            return;
        }
        //优化1
        if(right - left +1 <= 15){
            insertSort2(array,left,right);
            return;
        }
        //优化2
        int index = middleNum(array,left,right);
        swap(array,index,left);
        int div = partition(array,left,right);
        quickSort(array,left,div-1);
        quickSort(array,div+1,right);
    }

快速排序的特性总结:

1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序

2. 时间复杂度:O(N*logN)

3. 空间复杂度:O(logN)

4. 稳定性:不稳定

常见问题:

1.在partition 方法中array[j] >= pivot 和 array[i] <= pivot中的等号能否去掉?

答:不能,因为当left和right下标的值等于pivot时会陷入死循环。

2.在partition 方法中能不能先从left开始遍历?

答:不能,因为这样最后和第一个数交换时会把比pivot大的数给到第一个(假设取得pivot取的都是第一个数)

归并排序:

思路:归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使 子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

图片如下:

 代码实现:

先拆分后合并用递归实现拆分,merge实现合并。

//归并排序
    public static void mergeSort(int[] array,int left,int right){
        if(left >= right){
            return;
        }
        int mid = left + ((right - left) >> 1);
        mergeSort(array,left,mid);
        mergeSort(array,mid+1,right);
        merge(array,left,mid,right);
    }
    private static void merge(int[] array,int left,int mid,int right){
        int s1 = left;
        int s2 = mid + 1;
        int e1 = mid;
        int e2 = right;
        int k = 0;
        int[] tmpArr = new int[right - left + 1];
        while(s1 <= e1 && s2 <= e2){
            if(array[s1] < array[s2]){
                tmpArr[k++] = array[s1++];
            }else{
                tmpArr[k++] = array[s2++];
            }
        }
        while(s1 <= e1){
            tmpArr[k++] = array[s1++];
        }
        while(s2 <= e2){
            tmpArr[k++] = array[s2++];
        }
        for(int i = 0;i < k;i++){
            array[i + left] = tmpArr[i];//特别注意要加left
        }
    }

归并排序总结:

1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。

2. 时间复杂度:O(N*logN)

3. 空间复杂度:O(N)

4. 稳定性:稳定

总结:

重点掌握:快排,堆排,归并,插入。

计数,基数,桶,这三个排序了解即可(代码不会写都没事不考的)

 

结语:

其实写博客不仅仅是为了教大家,同时这也有利于我巩固自己的知识点,和一个学习的总结,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进,如果大家有所收获的话还请不要吝啬你们的点赞收藏和关注,这可以激励我写出更加优秀的文章。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1444548.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数学建模】【2024年】【第40届】【MCM/ICM】【B题 搜寻潜水器】【解题思路】

一、题目 &#xff08;一&#xff09;赛题原文 2024 MCM Problem A: Resource Availability and Sex Ratios Maritime Cruises Mini-Submarines (MCMS), a company based in Greece, builds submersibles capable of carrying humans to the deepest parts of the ocean. A …

基于POSCMS架构开发的素材资源网平台整站全面修复版源码

(购买本专栏可免费下载栏目内所有资源不受限制,持续发布中,需要注意的是,本专栏为批量下载专用,并无法保证某款源码或者插件绝对可用,介意不要购买) 资源简介 基于POSCMS架构开发的素材资源网平台整站全面修复版源码一键安装版 系统功能介绍 支持文章、论坛、下载、…

解决 postman测试接口报404 Not Found

JDK版本&#xff1a;jdk17 IDEA版本&#xff1a;IntelliJ IDEA 2022.1.3 文章目录 问题描述原因分析解决方案 问题描述 当我使用postman测试接口时&#xff0c;报了 404 Not Found 的错误&#xff0c;报错截图如下所示 但我的后端程序中已经定义了该接口&#xff0c;如下所示 …

2024给你一些Android 应用性能优化的建议

2024给你一些Android 应用性能优化的建议 在当今激烈竞争的移动应用市场中&#xff0c;用户对应用性能和体验的要求越来越高。因此&#xff0c;进行 Android 应用性能优化是开发过程中必不可少的一环。下面将详细介绍如何提升应用的性能&#xff0c;以提升用户体验。 1. 优化…

静态时序分析:建立时间分析

静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 在静态时序分析中&#xff0c;建立时间检查约束了触发器时钟引脚&#xff08;时钟路径&#xff09;和输入数据引脚&#xff08;数据路径&#xff09;之间的时序关系&#x…

EMC学习笔记(二十四)降低EMI的PCB设计指南(四)

降低EMI的PCB设计指南&#xff08;四&#xff09; 1.电路板分区2.信号走线2.1 电容和电感串扰2.2 天线2.3 端接和传输线2.4输入端的阻抗匹配 tips&#xff1a;资料主要来自网络&#xff0c;仅供学习使用。 1.电路板分区 电路板分区与电路板平面规划具有相同的基本含义&#x…

ubuntu22.04 安装部署04:经常死机,鼠标,键盘无响应

相关文章&#xff1a; ubuntu22.04 安装部署01&#xff1a;禁用内核更新 ubuntu22.04安装部署02&#xff1a;禁用显卡更新 ubuntu22.04安装部署03&#xff1a; 设置root密码 一、现象说明 1. 开机一小时后&#xff0c;突然之间网络掉线&#xff0c;鼠标、键盘无反应。 2.…

数据结构|对称矩阵压缩存储的下标公式推导|如何求对称矩阵压缩存储对应的一维数组下标

因为考试的时候可能会给很多情况的变式题&#xff0c;所以要会推导而不是背公式&#xff0c;情况变了&#xff0c;公式就不管用了。 行优先、只存储主对角线下三角区&#xff1a; 矩阵下标 ai,j(i>j)->一维数组下标 B[k] 按照行优先的原则&#xff0c;确定 ai,j 是一维数…

[word] word分割线在哪里设置 #其他#经验分享

word分割线在哪里设置 在工作中有些技巧&#xff0c;可以快速提高工作效率&#xff0c;解决大部分工作&#xff0c;今天给大家分享word分割线在哪里设置的小技能&#xff0c;希望可以帮助到你。 1、快速输入分割线 输入三个【_】按下回车就是一条长直线&#xff0c;同样分别…

mysql、mybatis中SORT

SORT排序 根据数据表sys_series中HOT(int类型)进行升序排列: 原来的数据库中存储: 排序# 结果是HOT字段为null的所有数据都排在最前面,不为null的数据按升序排列 SELECT * FROM sys_series ORDER BY HOT;# 结果是HOT字段为null的所有数据都排在最后面,不为null的数据按数…

逆向实战29——某度 某家号2024旋转验证码识别

前言 本文章中所有内容仅供学习交流&#xff0c;抓包内容、敏感网址、数据接口均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff0c;若有侵权&#xff0c;请联系我立即删除&#xff01; 目标网站 aHR0cHM6Ly9hd…

springboot177健身房管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

年假作业day2

1.打印字母图形 #include<stdio.h> #include<string.h> int main(int argc, const char *argv[]) { int i,j; char k; for(i1;i<7;i) { for(j1;j<i;j) { printf("%c",_); } for(j0,…

假期day5

TCP UDP区别 共同点&#xff1a;都是属于传输层的协议 TCP&#xff1a;稳定。面向连接的&#xff0c;有可靠的数据传输服务。传输过程中数据无误&#xff0c;无丢失&#xff0c;无失序&#xff0c;无重复。传输效率低&#xff0c;耗费资源多。数据收发不同步&#xff0c;有沾…

docker核心技术

一. 从系统架构谈起 传统分层架构 vs 微服务 微服务改造 分离微服务的方法建议: 审视并发现可以分离的业务逻辑业务逻辑,在对业务领域不是特别熟悉的时候,按照部门职能进行划分,例如账号、财务等寻找天生隔离的代码模块,可以借助于静态代码分析工具如果可以闭环的解决一…

接口测试 05 -- 接口加密处理

前言 实际工作当中,涉及到接口加密时,每一个公司加密方式都是不一样的。 1. 遇到接口加密的解决方法: ① 如果是一些常用的加密,可以通过 (第三方)工具或者代码去解决。 ② 如果是开发自己封装的加密方法,核心逻辑外人是无法知道的,最好的方式让开发去协助你。提供接口去…

vue3 之 商城项目—二级分类

二级分类功能描述 配置二级路由 准备组件模版 <script setup></script><template><div class"container "><!-- 面包屑 --><div class"bread-container"><el-breadcrumb separator">"><el-bre…

fast.ai 机器学习笔记(二)

机器学习 1&#xff1a;第 5 课 原文&#xff1a;medium.com/hiromi_suenaga/machine-learning-1-lesson-5-df45f0c99618 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它&#xff0c;这些笔记将继续更…

05.坐标系

1. 坐标系原点 坐标系原点就是屏幕/窗口的左上角&#xff0c;X向右增长&#xff0c;Y向下增长。 2.设置控件位置 设置控件位置&#xff0c;就相当于是需要指定控件的坐标&#xff0c;对于该控件来说&#xff0c;其坐标原点是其父窗口/父控件的左上角。 设置方法就是通过控件的…

火车可视化调车系统

列车在调车作业时&#xff0c;当机车头在尾部推动车厢时&#xff0c;司机室一人操控机车&#xff0c;车厢前端配备两名挂梯随车运行调车员&#xff0c;调车员人为分析行车方向是否有障碍、轨道行人等紧急情况&#xff0c;通过对讲机通知司机控制停车。由于司机无法直观观察列车…