Pytorch卷积层原理和示例 nn.Conv1d卷积 nn.Conv2d卷积

news2024/11/26 4:31:49

内容列表

一,前提
二,卷积层原理
1.概念
2.作用
3. 卷积过程
三,nn.conv1d
1,函数定义:
2, 参数说明:
3,代码:
4, 分析计算过程
四,nn.conv2d
1, 函数定义
2, 参数:
3, 代码
4, 分析计算过程

一,前提

在开始前,要使用pytorch实现以下内容,需要掌握tensor和的用法

二,卷积层原理

1.概念

卷积层是用一个固定大小的矩形区去席卷原始数据,将原始数据分成一个个和卷积核大小相同的小块,然后将这些小块和卷积核相乘输出一个卷积值(注意这里是一个单独的值,不再是矩阵了)。

2.作用

特征提取

卷积的本质就是用卷积核的参数来提取原始数据的特征,通过矩阵点乘的运算,提取出和卷积核特征一致的值,如果卷积层有多个卷积核,则神经网络会自动学习卷积核的参数值,使得每个卷积核代表一个特征。

3. 卷积过程

在这里插入图片描述

三,nn.conv1d

这里我们拿最常用的conv1d举例说明卷积过程的计算。

conv1d是一维卷积,它和conv2d的区别在于只对宽度进行卷积,对高度不卷积。

1,函数定义:

torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

2, 参数说明:

**input:**输入的Tensor数据,格式为(batch,channels,W),三维数组,第一维度是样本数量,第二维度是通道数或者记录数。三维度是宽度。

**weight:**卷积核权重,也就是卷积核本身。是一个三维数组,(out_channels, in_channels/groups, kW)。out_channels是卷积核输出层的神经元个数,也就是这层有多少个卷积核;in_channels是输入通道数;kW是卷积核的宽度。

**bias:**位移参数,可选项,一般也不用管。

**stride:**滑动窗口,默认为1,指每次卷积对原数据滑动1个单元格。

**padding:**是否对输入数据填充0。Padding可以将输入数据的区域改造成是卷积核大小的整数倍,这样对不满足卷积核大小的部分数据就不会忽略了。通过padding参数指定填充区域的高度和宽度,默认0(就是填充区域为0,不填充的意思)

**dilation:**卷积核之间的空格,默认1。

**groups:**将输入数据分组,通常不用管这个参数,没有太大意义。

3,代码:

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F

a=range(16)
x = Variable(torch.Tensor(a))
'''
a: range(0, 16)
x: tensor([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13.,
        14., 15.])
'''

x=x.view(1,1,16)
'''
x variable: tensor([[[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13., 14., 15.]]])
'''

b=torch.ones(3)
b[0]=0.1
b[1]=0.2
b[2]=0.3
weights = Variable(b)
weights=weights.view(1,1,3)
'''
weights: tensor([[[0.1000, 0.2000, 0.3000]]])
'''

y=F.conv1d(x, weights, padding=0)
'''
y: tensor([[[0.8000, 1.4000, 2.0000, 2.6000, 3.2000, 3.8000, 4.4000, 5.0000, 5.6000, 6.2000, 6.8000, 7.4000, 8.0000, 8.6000]]])
'''

上面出现了 x.view(1,1,16) view的用法参考我之前的博客
Pytorch-view的用法
上面出现了 Variable(torch.Tensor(a)) Tensor和Variable的用法参考我之前的博客
pytorch入门 Variable 用法
PyTorch Tensor的初始化和基本操作

4, 分析计算过程

(1) 原始数据大小是0-15的一共16个数字,卷积核宽度是3,向量是[0.1,0.2,0.3]。 我们看第一个卷积是对x[0:3]共3个值[0,1,2]进行卷积,公式如下:

00.1+10.2+2*0.3=0.8
在这里插入图片描述

(2) 对第二个目标卷积,是x[1:4]共3个值[1,2,3]进行卷积,公式如下:

10.1+20.2+3*0.3=1.4
在这里插入图片描述

剩下的就以此类推

四,nn.conv2d

1, 函数定义

nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True))

2, 参数:

in_channel: 输入数据的通道数,例RGB图片通道数为3;

out_channel: 输出数据的通道数,这个根据模型调整;
  kennel_size: 卷积核大小,可以是int,或tuple;kennel_size=2,意味着卷积大小(2,2), kennel_size=(2,3),意味着卷积大小(2,3)即非正方形卷积
  stride:步长,默认为1,与kennel_size类似,stride=2,意味着步长上下左右扫描皆为2, stride=(2,3),左右扫描步长为2,上下为3;
  padding: 零填充

3, 代码

import torch
import torch.nn as nn
from torch.autograd import Variable

r = torch.randn(5, 8, 10, 5) # batch, channel , height , width
print(r.shape)

r2 = nn.Conv2d(8, 14, (3, 2), (2,1))  # in_channel, out_channel ,kennel_size,stride
print(r2)

r3 = r2(r)
print(r3.shape)
torch.Size([5, 8, 10, 5])
Conv2d(8, 14, kernel_size=(3, 2), stride=(2, 1))
torch.Size([5, 14, 4, 4])

4, 分析计算过程

卷积公式:

h = (h - kennel_size + 2padding) / stride + 1
w = (w - kennel_size + 2padding) / stride + 1

r = ([5, 8, 10, 5]),其中h=10,w=5,对于卷积核长分别是 h:3,w:2 ;对于步长分别是h:2,w:1;padding默认0;

h = (10 - 3 + 20)/ 2 +1 = 7/2 +1 = 3+1 =4
w =(5 - 2 + 20)/ 1 +1 = 3/1 +1 = 3/1+1 =4

batch = 5, out_channel = 14

故: y= ([5, 14, 4, 4])

参考

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1444431.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Netty应用(七) 之 Handler Netty服务端编程总结

目录 15.Handler 15.1 handler的分类 15.1.1 按照方向划分 15.1.2 handler的结构 15.2 输入方向ChannelInboundHandlerAdapter 15.2.1 输出方向Handler的顺序 15.2.2 多个输入方向Handler之间的数据传递 15.2.2.1 handler消失了 15.2.2.2 手动编写netty提供的new Strin…

一个查看armv8系统寄存器-值-含义的方式

找到解压后的SysReg_xml_v86A-2019-12目录 wget https://developer.arm.com/-/media/developer/products/architecture/armv8-a-architecture/2019-12/SysReg_xml_v86A-2019-12.tar.gz wget https://developer.arm.com/-/media/developer/products/architecture/armv8-a-archi…

(已解决)将overleaf上的文章paper上传到arxiv上遇到的问题。

文章目录 前言初级问题后续问题 前言 首先说一点,将paper的pdf文件直接上传arxiv是不行的,arxiv要求我们要上传源文件,所以才这么麻烦。 初级问题 首先上传文件之后有可能会在下面这个界面出现问题,这里一般都比较常见的问题&a…

『运维备忘录』之 HTTP 响应状态码速查

运维人员不仅要熟悉操作系统、服务器、网络等只是,甚至对于开发相关的也要有所了解。很多运维工作者可能一时半会记不住那么多命令、代码、方法、原理或者用法等等。这里我将结合自身工作,持续给大家更新运维工作所需要接触到的知识点,希望大…

java学习07---综合练习

飞机票 1.需求: 机票价格按照淡季旺季、头等舱和经济舱收费、输入机票原价、月份和头等舱或经济舱。 按照如下规则计算机票价格:旺季(5-10月)头等舱9折,经济舱8.5折,淡季(11月到来年4月)头等舱7…

[C#] 如何使用ScottPlot.WPF在WPF桌面程序中绘制图表

什么是ScottPlot.WPF? ScottPlot.WPF 是一个开源的数据可视化库,用于在 WPF 应用程序中创建高品质的绘图和图表。它是基于 ScottPlot 库的 WPF 版本,提供了简单易用的 API,使开发人员能够通过简单的代码创建各种类型的图表&#…

【项目技术点总结之三】使用Java生成复杂好看的word或pdf报告的解决方案

前言 项目中往往会遇到需要生成报告的场景,不管是简单报告还是复杂报告,其实都需要找很多资料去尝试,本文会提出几种个人完美解决报告生成的解决方案,而且会提出几个失败但是能生成报告的设想,当然都是踩过坑的&#…

Peter算法小课堂—背包问题

我们已经学过好久好久的动态规划了,动态规划_Peter Pan was right的博客-CSDN博客 那么,我用一张图片来概括一下背包问题。 大家有可能比较疑惑,优化决策怎么优化呢?答案是,滚动数组,一个神秘而简单的东西…

java nio零拷贝

零拷贝是一种计算机执行IO操作的优化技术,其核心目标是减少数据拷贝次数,从而提高系统性能。它主要体现在以下几个方面: 1. **定义与原理**:零拷贝字面上的意思包括“零”和“拷贝”。其中,“拷贝”是指数据从一个存储…

《21天精通IPv4 to IPv6》第3天:IPv6地址配置——如何为不同的系统配置IPv6?

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …

SpringCloud-Nacos服务分级存储模型

Nacos 服务分级存储模型是 Nacos 存储服务注册信息和配置信息的核心模型之一。它通过将服务和配置信息按照不同级别进行存储,实现了信息的灵活管理和快速检索,为微服务架构下的服务发现和配置管理提供了高效、可靠的支持。本文将对 Nacos 服务分级存储模…

CentOS7搭建Hadoop集群

准备工作 1、准备三台虚拟机,参考:CentOS7集群环境搭建(3台)-CSDN博客 2、配置虚拟机之间免密登录,参考:CentOS7集群配置免密登录-CSDN博客 3、虚拟机分别安装jdk,参考:CentOS7集…

springboot179基于javaweb的流浪宠物管理系统的设计与实现

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计,课程设计参考与学习用途。仅供学习参考, 不得用于商业或者非法用途,否则,一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

HiveSQL——用户行为路径分析

注:参考文档: SQL之用户行为路径分析--HQL面试题46【拼多多面试题】_路径分析 sql-CSDN博客文章浏览阅读2k次,点赞6次,收藏19次。目录0 问题描述1 数据分析2 小结0 问题描述已知用户行为表 tracking_log, 大概字段有&…

CVE-2012-1823 漏洞复现

CVE-2012-1823 PHP SAPI 与运行模式 首先,介绍一下PHP的运行模式。 下载PHP源码,可以看到其中有个目录叫sapi。sapi在PHP中的作用,类似于一个消息的“传递者”,比如在《Fastcgi协议分析 && PHP-FPM未授权访问漏洞 &…

【前后端的那些事】2万字详解WebRTC + 入门demo代码解析

文章目录 构建WebRTC需要的协议1. ICE2. STUN3. NAT4. TURN5.SDP WebRTC通讯过程1. 大致流程2. 详细流程3. 核心api3.1 RTCPeerConnection3.2 媒体协商3.3 重要事件 代码编写1. 什么是websocket2. 消息实体类Message3. 业务流程图4. 搭建前后端环境5. join -- handleJoin -- jo…

2月11日作业

1、请使用递归实现n! 代码&#xff1a; #include<stdio.h> #include<string.h> #include<stdlib.h>int fun(int n) {if(n1)return 1;else{return n*fun(n-1);} }int main(int argc, const char *argv[]) {int n;printf("please enter n:");scanf…

keil调试出现cannot evaluate新思路

我在用最新的keil时也出现了这个问题&#xff0c;网上说的办法几乎没啥用&#xff0c;包括魔术棒的设置和将变量定义为全局变量&#xff0c;都没用。 这里我使用的是keil5.13&#xff0c;编译器是6.21&#xff0c;硬件是STM32F407VET6 可以看到&#xff0c;即使是定义为全局变量…

GeoServer 2.11.1升级解决Eclipse Jetty 的一系列安全漏洞问题

Eclipse Jetty 资源管理错误漏洞(CVE-2021-28165) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7656) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7657) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7658) Jetty 信息泄露漏洞(CVE-2017-9735) Eclipse Jetty 安全漏洞(CVE-2022-20…

二分搜索法的探究与心得

引言 在计算机科学中&#xff0c;二分搜索&#xff08;Binary Search&#xff09;算法是一种在有序数组中查找特定元素的基本搜索技术。其优点在于高效的搜索速度&#xff0c;时间复杂度为 ( O(log n) )&#xff0c;这一点与时间复杂度为O(n) 的线性搜索法相比&#xff0c;效率…