深度学习(13)--PyTorch搭建神经网络进行气温预测

news2025/1/18 17:15:50

一.搭建神经网络进行气温预测流程详解

1.1.导入所需的工具包

import numpy as np  # 矩阵计算
import pandas as pd   # 数据读取
import matplotlib.pyplot as plt  # 画图处理
import torch  # 构建神经网络
import torch.optim as optim  # 设置优化器

1.2.读取并处理数据

引入数据并查看数据的格式

# 引入数据
features = pd.read_csv('temps.csv')

# 看看数据长什么样子
print(features.head())

Pandas库中的.head()函数,取数据的前n行数据,默认是取前五行数据,如上图所示。

查看数据维度

print('数据维度:', features.shape)

shape函数的功能是读取矩阵的长度,.shape直接输出数据的维度,如上图,表示该数据的维度为348行,9列。对应的也就是348个样本,9个特征。

而shape[0],shape[1]则分别返回矩阵第一维度、第二维度的长度:

# 查看数据维度
print('数据维度:', features.shape[0])
print('数据维度:', features.shape[1])

处理时间数据

# 处理时间数据
import datetime

# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']

# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]

 查看处理的datas数据格式

print(dates[:3])

对特殊数据进行one-hot编码 

计算机无法识别字符串数据,所以对于字符串数据需要使用one-hot编码:

features = pd.get_dummies(features) 

# get_dummies会自动判断数据中哪一列是字符串,并自动将字符串展开。

# eg:数据中用于标注星期的字符串一共有七个,则get_dummies函数将数据展开成七列,当天是哪一天就在相应位置标1。

# 星期 一 二 三 四 五 六 七,如果是星期一则标注为:1 0 0 0 0 0 0,如果是星期三则标注为:0 0 1 0 0 0 0,如果是星期六则标注为:0 0 0 0 0 1 0

 查看one-hot编码后的数据

对标签进行处理

# 标签
labels = np.array(features['actual'])  # 获取标签:features获取actual的标签然后再转换为np.array的格式

# 在特征中去掉标签
features= features.drop('actual', axis = 1)  # 去除features中的actual标签,axis表示沿着行/列去除,axis=0按行计算,axis=1按列计算

# 名字单独保存一下,以备后患
feature_list = list(features.columns)  # 保存features中的columns值,也就是列

# 转换成合适的格式
features = np.array(features)  # 把处理后的features数据也转换为np.array格式

标准化处理 

不同的数据取值范围不同,而机器又会认为数值大的数据较为重要,所以需要对数据进行标准化(x-μ/σ) -- μ为均值,σ为标准差。

from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)  # fit_transform通过数据计算出均值和标准差,再对数据进行标准化处理变换。

fit_transform通过数据计算出均值和标准差,再对数据进行标准化处理变换。

标准化处理前后的数据:

1.3.构建网络模型

构建网络

本项目构建的网络模型较为简单,只有一个隐层

# shape[0]是样本数,也就是行的数据,shape[1]是特征数,也就是列的数据
input_size = input_features.shape[1]  
hidden_size = 128
output_size = 1
batch_size = 16  # 一次迭代batch个样本
my_nn = torch.nn.Sequential(
    torch.nn.Linear(input_size, hidden_size),  # 根据输入自动初始化权重参数和偏重值
    torch.nn.ReLU(),  # 激活函数 Sigmoid/Relu
    torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')  # 损失函数设置:MSE均方误差
optimizer = torch.optim.Adam(my_nn.parameters(), lr=0.001)  
# 优化器设置:Adam,参数为网络中的所有参数以及学习率

训练网络

# 训练网络
losses = []
# 迭代1000次,epoch = 1000
for i in range(1000):
    batch_loss = []
    # MINI-Batch方法来进行训练
    for start in range(0, len(input_features), batch_size):  # 循环范围为0~样本数,每次循环中间间隔batchs_size
        end = start + batch_size if start + batch_size < len(input_features) else len(input_features)  # 做一个索引是否越界的判断
        # 取得一个batch的数据
        xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)
        yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)
        prediction = my_nn(xx)  # 输入值经过定义的网络运算得到预测值
        loss = cost(prediction, yy)  # 参数为预测值和真实值
        optimizer.zero_grad()  # torch的迭代过程中会累计之前的训练结果,所以在每次迭代中需要清空梯度值
        loss.backward(retain_graph=True)  # 反向传播
        optimizer.step()  # 对所有参数进行更新
        batch_loss.append(loss.data.numpy())
    
    # 打印损失
    if i % 100==0:
        losses.append(np.mean(batch_loss))
        print(i, np.mean(batch_loss))

预测训练结果 

x = torch.tensor(input_features, dtype = torch.float)  
# 先将数据转换为tensor格式,因为需要在网络中进行运算
predict = my_nn(x).data.numpy()  
# 在网络中运算完成中,再转换为data.numpy格式,因为后续需要进行画图处理

1.4.对结果进行画图对比

# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]

# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data={'date': dates, 'actual': labels})

# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]

test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]

predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)})   # predict是x经过网络训练再转换为np.array的值

# 画图

# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label='actual')  # 参数分别为:横轴,纵轴,曲线颜色,标签值

# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label='prediction')  # 参数分别为:横轴,纵轴,曲线颜色,标签值
plt.xticks(rotation=30)  # x轴参数倾斜60°
plt.legend()  # 使上述代码产生效果

# 图名
plt.xlabel('Date')
plt.ylabel('Maximum Temperature (F)')  # x,y轴标签设置
plt.title('Actual and Predicted Values')  # 图名设置

# 保存图片并展示
plt.savefig("result.png")
plt.show()

二.完整代码

import numpy as np  # 矩阵计算
import pandas as pd   # 数据读取
import matplotlib.pyplot as plt  # 画图处理
import torch  # 构建神经网络
import torch.optim as optim  # 设置优化器

# 处理时间数据
import datetime

from sklearn import preprocessing

# 引入数据
features = pd.read_csv('temps.csv')

# 看看数据长什么样子
# print(features.head())

# 查看数据维度
# print('数据维度:', features.shape)


# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']

'''
# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]

print(dates[:3])
'''

# 独热(one-hot)编码 -- 机器不认识字符串,需要将字符串转换为机器认识的参数
features = pd.get_dummies(features)
# get_dummies会自动判断数据中哪一列是字符串,并自动将字符串展开
# eg:数据中用于标注星期的字符串一共有七个,则get_dummies函数将数据展开成七列,当天是哪一天就在相应位置标1
# 星期 一 二 三 四 五 六 七,如果是星期一则标注为:1 0 0 0 0 0 0,如果是星期三则标注为:0 0 1 0 0 0 0,如果是星期六则标注为:0 0 0 0 0 1 0
# print(features.head(5))

# 标签
labels = np.array(features['actual'])  # 获取标签:features获取actual的标签然后再转换为np.array的格式

# 在特征中去掉标签
features = features.drop('actual', axis = 1)  # 去除features中的actual标签,axis表示沿着行/列去除,axis=0按行计算,axis=1按列计算

# 名字单独保存一下,以备后患
feature_list = list(features.columns)  # 保存features中的columns值,也就是列

# 转换成合适的格式
features = np.array(features)  # 把处理后的features数据也转换为np.array格式

# print(features[0])
# 标准化处理
input_features = preprocessing.StandardScaler().fit_transform(features)
# fit_transform通过数据计算出均值和标准差,再对数据进行标准化处理变换。
# print(input_features[0])

# shape[0]是样本数,也就是行的数据,shape[1]是特征数,也就是列的数据
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16  # 一次迭代batch个样本
my_nn = torch.nn.Sequential(
    torch.nn.Linear(input_size, hidden_size),  # 根据输入自动初始化权重参数和偏重值
    torch.nn.ReLU(),  # 激活函数 Sigmoid/ReLU
    torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')  # 损失函数设置:MSE均方误差
optimizer = torch.optim.Adam(my_nn.parameters(), lr=0.001)
# 优化器设置:Adam,参数为网络中的所有参数以及学习率

# 训练网络
losses = []
# 迭代1000次,epoch = 1000
for i in range(1000):
    batch_loss = []
    # MINI-Batch方法来进行训练
    for start in range(0, len(input_features), batch_size):  # 循环范围为0~样本数,每次循环中间间隔batchs_size
        end = start + batch_size if start + batch_size < len(input_features) else len(input_features)  # 做一个索引是否越界的判断
        # 取得一个batch的数据
        xx = torch.tensor(input_features[start:end], dtype=torch.float, requires_grad=True)
        yy = torch.tensor(labels[start:end], dtype=torch.float, requires_grad=True)
        prediction = my_nn(xx)  # 输入值经过定义的网络运算得到预测值
        loss = cost(prediction, yy)  # 参数为预测值和真实值
        optimizer.zero_grad()  # torch的迭代过程中会累计之前的训练结果,所以在每次迭代中需要清空梯度值
        loss.backward(retain_graph=True)  # 反向传播
        optimizer.step()  # 对所有参数进行更新
        batch_loss.append(loss.data.numpy())

    '''
    # 打印损失
    if i % 100 == 0:
        losses.append(np.mean(batch_loss))
        print(i, np.mean(batch_loss))
    '''

# 预测训练结果
x = torch.tensor(input_features, dtype=torch.float)
# 先将数据转换为tensor格式,因为需要在网络中进行运算
predict = my_nn(x).data.numpy()
# 在网络中运算完成中,再转换为data.numpy格式,因为后续需要进行画图处理

# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]

# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data={'date': dates, 'actual': labels})

# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]

test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]

predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)})   # predict是x经过网络训练再转换为np.array的值

# 画图

# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label='actual')  # 参数分别为:横轴,纵轴,曲线颜色,标签值

# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label='prediction')  # 参数分别为:横轴,纵轴,曲线颜色,标签值
plt.xticks(rotation=30)  # x轴参数倾斜60°
plt.legend()  # 使上述代码产生效果

# 图名
plt.xlabel('Date')
plt.ylabel('Maximum Temperature (F)')  # x,y轴标签设置
plt.title('Actual and Predicted Values')  # 图名设置

# 保存图片并展示
plt.savefig("result.png")
plt.show()


三.输出结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1441973.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PWM输入输出

PWM&#xff08;Pulse Width Modulation&#xff09;即脉冲宽度调制&#xff0c;在具有惯性的系统中&#xff0c;可以通过对一系列脉冲的宽度进行制&#xff0c;来等效地获得所需要的模拟参量&#xff0c;常应用于电机控速、开关电源等领域。 PWM参数 PWM 中有三个重要参数&…

代码随想录算法训练营第四十七天(动态规划篇)| 416. 分割等和子集

416. 分割等和子集 题目链接&#xff1a;416. 分割等和子集 - 力扣&#xff08;LeetCode&#xff09; 思路 回溯——超时 首先想到之前的回溯算法&#xff0c;寻找数组中加和等于sum(nums)/2的子集&#xff0c;但对于大数组超时了&#xff1a; class Solution(object):def…

nodejs+vue高校实验室耗材管理系统_m20vy

用户功能&#xff1a; 登录后要有一个首页 比如:可以看见目前的耗材消耗记录&#xff0c;可做成图表菜单栏在左侧显示 1.个人信息管理 可以对基本信息进行修改&#xff0c;(修改密码时需要验证) 2.耗材管理&#xff08;耗材信息&#xff09; 普通用户可以查询当前相关耗材信息[…

[Java][算法 哈希]Day 01---LeetCode 热题 100---01~03

LeetCode 热题 100---01~03 ------->哈希 第一题 两数之和 思路 最直接的理解就是 找出两个数的和等于目标数 这两个数可以相同 但是不能是同一个数字&#xff08;从数组上理解就是内存上不是同一位置&#xff09; 解法一&#xff1a;暴力法 暴力解万物 按照需求 …

C++类型转化cast from pointer to smaller type ‘int‘ loses information

代码如下 #include <iostream>int main() {int a 10;std::cout << (int)&a << std::endl;return 0; }编译 这段代码是要将地址转化成整数类型&#xff0c;但是在编译时编译器告诉我们这是错的&#xff0c;因为在C中&#xff0c;将指针转换为int类型的…

Codeforces Edu 74 E. Keyboard Purchase 【状压DP +贡献】

E. Keyboard Purchase 题意 给定一个长度为 n n n 的字符串 s s s 仅由前 m m m 个小写字母组成 现在要求求出包含前 m m m 个小写字母的键盘&#xff0c;使得在键盘上敲出 s s s 要移动的距离最短 移动总距离为&#xff1a; ∑ i 2 n ∣ p o s s i − 1 − p o s s i…

LabVIEW热电偶自动校准系统

设计并实现一套基于LabVIEW平台的工业热电偶自动校准系统&#xff0c;通过自动化技术提高校准效率和精度&#xff0c;降低人力成本&#xff0c;确保温度测量的准确性和可靠性。 工业生产过程中&#xff0c;温度的准确测量对产品质量控制至关重要。传统的热电偶校准方式依赖人工…

昆仑万维发布天工 2.0 大语言模型及AI助手App;AI成功破解2000年前碳化古卷轴

&#x1f989; AI新闻 &#x1f680; 昆仑万维发布天工 2.0 大语言模型及AI助手App 摘要&#xff1a;昆仑万维近日推出了新版MoE大语言模型“天工 2.0”和相应的“天工 AI 智能助手”App&#xff0c;宣称为国内首个面向C端用户免费的基于MoE架构的千亿级参数大模型应用。天工…

MacOS上怎么把格式化成APFS的U盘或者硬盘格式化回ExFAT?

一、问题 MacOS在更新MacOS Monterey后或者更高系统后发现&#xff0c;格式U盘或者硬盘只有4个APFS选项&#xff0c;那么我们该如何将APFS格式成ExFAT&#xff1f; 二、解答 将APFS的U盘或者硬盘拓展成MacOS的拓展格式即可&#xff0c;操作步骤如下 1、电脑接入U盘或者硬盘 2…

从中序与后序遍历序列构造二叉树

给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7], postorder [9,15,7,20,3] 输出&#xff1a;[3…

C++ PE文件信息解析

尝试解析PE文件结构, 于是编写了此PE信息助手类, 暂时完成如下信息解析 1.导出表信息(Dll模块, 函数) 2.导入表信息(Dll模块, 函数) 3.资源表信息(字符串表, 版本信息, 清单信息) CPEHelper.h #pragma once// // brief: PE文件解析助手类 // copyright: Copyright 2024 Flame…

MySQL数据库⑦_复合查询+内外链接(多表/子查询)

目录 1. 回顾基本查询 2. 多表查询 2.1 笛卡尔积初步过滤 3. 自连接 4. 子查询 4.1 单行子查询 4.2 多行子查询 4.2 多列子查询 4.2 from子句中使用子查询 5. 合并查询 6. 内外链接 6.1 内连接 6.2 左外链接 6.2 右外连接 本篇完。 1. 回顾基本查询 先回顾一下…

51单片机编程应用(C语言):串口通信

目录 通信的基本概念和种类 1.1串行通信与并行通信 ​编辑 1.2同步通信与异步通信 1.3单工&#xff0c;半双工&#xff0c;全双工 1.4通信速率 二、波特率和比特率的关系 串口通信简介&#xff1a; 1.接口标准 RS-232 2、D型9针接口定义 3.通信协议&#xff1a; …

OCP使用web console创建和构建应用

文章目录 环境登录创建project赋予查看权限部署第一个image检查pod扩展应用 部署一个Python应用连接数据库创建secret加载数据并显示国家公园地图 清理参考 环境 RHEL 9.3Red Hat OpenShift Local 2.32 登录 在 crc start 启动crc时&#xff0c;可以看到&#xff1a; .....…

2 月 7 日算法练习- 数据结构-树状数组上二分

问题引入 给出三种操作&#xff0c; 0在容器中插入一个数。 1在容器中删除一个数。 2求出容器中大于a的第k大元素。 树状数组的特点就是对点更新&#xff0c;成段求和&#xff0c;而且常数非常小。原始的树状数组只有两种操作&#xff0c;在某点插入一个数和求1到i的所有数的…

C++,stl,栈stack和队列queue详解

1.栈stack 1.stack基本概念 2.stack常用接口 代码示例&#xff1a; #include<bits/stdc.h> using namespace std;int main() {stack<int> stk;stk.push(7);stk.push(9);stk.push(5);cout << "栈的size为&#xff1a;" << stk.size() <…

“金龙送礼,昂首贺春”—— Anzo Capital给您送五粮液、茅台啦!

“迎龙年&#xff0c;贺新春”—— 值此龙年将至之际&#xff0c;为答谢新老客户一直以来对Anzo Capital昂首资本的信赖和支持&#xff0c;Anzo Capital昂首资本2月入金送礼活动重磅升级&#xff0c;除了京东卡、天猫超市卡、奔富红酒、SKG健康产品、白酒礼盒以外&#xff0c…

RocketMQ客户端实现多种功能

目录 RocketMQ客户端基本流程 消息确认机制 1、消息生产端采用消息确认加多次重试的机制保证消息正常发送到RocketMQ 单向发送 同步发送 异步发送 2、消息消费者端采用状态确认机制保证消费者一定能正常处理对应的消息 3、消费者也可以自行指定起始消费位点 广播消息 …

学习Pytorch深度学习运行AlexNet代码时关于在Pycharm中解决 “t >= 0 t < n_classes” 的断言错误方法

在学习深度学习的过程中&#xff0c;遇到了一个报错&#xff1a; 这跑的代码是AlexNet的代码实现。 运行时出现报错&#xff1a; C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\cuda\Loss.cu:257: block: [0,0,0], thread: [4,0,0] Assertion t > 0 && t…

[职场] 公务员面试停顿磕巴常见吗 #学习方法#知识分享#知识分享

公务员面试停顿磕巴常见吗 面试时说话磕巴简直是太常见了&#xff0c;对于一个新问题&#xff0c;让人在短时间内&#xff0c;并且仅仅是三分钟内&#xff0c;就组织起一个答案&#xff0c;还无法全部打手稿&#xff0c;这对于连上个讲台都会脸发红的人来说&#xff0c;简直是一…