RocketMQ客户端实现多种功能

news2025/1/18 20:12:50

目录

RocketMQ客户端基本流程

消息确认机制

1、消息生产端采用消息确认加多次重试的机制保证消息正常发送到RocketMQ

单向发送

同步发送

异步发送

2、消息消费者端采用状态确认机制保证消费者一定能正常处理对应的消息

3、消费者也可以自行指定起始消费位点

广播消息

顺序消息机制

延迟消息

批量消息

过滤消息


RocketMQ客户端基本流程

引入依赖

        <dependency>
            <groupId>org.apache.rocketmq</groupId>
            <artifactId>rocketmq-client</artifactId>
            <version>4.9.5</version>
        </dependency>

消息生产者代码

public class Producer {
    public static void main(String[] args) throws MQClientException, InterruptedException {
        //初始化一个消息生产者
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
        // 指定nameserver地址
        producer.setNamesrvAddr("127.0.0.1:9876");
        // 启动消息生产者服务
        producer.start();
        for (int i = 0; i < 2; i++) {
            try {
                // 创建消息。消息由Topic,Tag和body三个属性组成,其中Body就是消息内容
                Message msg = new Message("TopicTest","TagA",("Hello RocketMQ " +i).getBytes(RemotingHelper.DEFAULT_CHARSET));
                //发送消息,获取发送结果
                SendResult sendResult = producer.send(msg);
                System.out.printf("%s%n", sendResult);
            } catch (Exception e) {
                e.printStackTrace();
                Thread.sleep(1000);
            }
        }
        //消息发送完后,停止消息生产者服务。
        producer.shutdown();
    }
}

消息消费者代码

public class Consumer {
    public static void main(String[] args) throws InterruptedException, MQClientException {
        //构建一个消息消费者
        DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_4");
        //指定nameserver地址
       consumer.setNamesrvAddr("127.0.0.1:9876");
       consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET);
        // 订阅一个感兴趣的话题,这个话题需要与消息的topic一致
        consumer.subscribe("TopicTest", "*");
        // 注册一个消息回调函数,消费到消息后就会触发回调。
        consumer.registerMessageListener(new MessageListenerConcurrently() {
            @Override
            public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,ConsumeConcurrentlyContext context) {
    msgs.forEach(messageExt -> {
                    try {
                        System.out.println("收到消息:"+new String(messageExt.getBody(), RemotingHelper.DEFAULT_CHARSET));
                    } catch (UnsupportedEncodingException e) {}
                });
                return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
            }
        });
        //启动消费者服务
        consumer.start();
        System.out.print("Consumer Started");
    }
}

RocketMQ的客户端编程模型相对比较固定,基本都有一个固定的步骤。

消息生产者的固定步骤

1.创建消息生产者producer,并指定生产者组名
2.指定Nameserver地址
3.启动producer。这个步骤比较容易忘记。可以认为这是消息生产者与服务端建立连接的过程。
4.创建消息对象,指定主题Topic、Tag和消息体
5.发送消息
6.关闭生产者producer,释放资源。

消息消费者的固定步骤

1.创建消费者Consumer,必须指定消费者组名
2.指定Nameserver地址
3.订阅主题Topic和Tag
4.设置回调函数,处理消息
5.启动消费者consumer。消费者会一直挂起,持续处理消息。

       关键是NameServer。可以看到,RocketMQ的客户端只需要指定NameServer地址,而不需要指定具体的Broker地址。


消息确认机制

       RocketMQ要支持互联网金融场景,那么消息安全是必须优先保障的。而消息安全有两方面的要求,一方面是生产者要能确保将消息发送到Broker上。另一方面是消费者要能确保从Broker上争取获取到消息。

1、消息生产端采用消息确认加多次重试的机制保证消息正常发送到RocketMQ

有三种发送消息的方式。

单向发送

​       单向发送方式下,消息生产者只管往Broker发送消息,而全然不关心Broker端有没有成功接收到消息。这就好比生产者向Broker发一封电子邮件,Broker有没有处理电子邮件,生产者并不知道。

public class OnewayProducer {
    public static void main(String[] args)throws Exception{
        DefaultMQProducer producer = new DefaultMQProducer("producerGroup");
        producer.start();
        Message message = new Message("Order","tag","order info : orderId = xxx".getBytes(StandardCharsets.UTF_8));
        producer.sendOneway(message);
        Thread.sleep(50000);
        producer.shutdown();
    }
}

​       sendOneway方法没有返回值,如果发送失败,生产者无法补救。​单向发送有一个好处,就是发送消息的效率更高。适用于一些追求消息发送效率,而允许消息丢失的业务场景。比如日志。

同步发送

       同步发送方式下,消息生产者在往Broker端发送消息后,会阻塞当前线程,等待Broker端的相应结果。这就好比生产者给Broker打了个电话。通话期间生产者就停下手头的事情,直到Broker明确表示消息处理成功了,生产者才继续做其他的事情。

SendResult sendResult = producer.send(msg);

​       SendResult来自于Broker的反馈。producer在send发出消息,到Broker返回SendResult的过程中,无法做其他的事情。

​       在SendResult中有一个SendStatus属性,这个SendStatus是一个枚举类型,其中包含了Broker端的各种情况。

public enum SendStatus {
    SEND_OK,
    FLUSH_DISK_TIMEOUT,
    FLUSH_SLAVE_TIMEOUT,
    SLAVE_NOT_AVAILABLE,
}

       在这几种枚举值中,SEND_OK表示消息已经成功发送到Broker上。至于其他几种枚举值,都是表示消息在Broker端处理失败了。使用同步发送的机制,我们就可以在消息生产者发送完消息后,对发送失败的消息进行补救。例如重新发送。

       这种同步发送的机制能够很大程度上保证消息发送的安全性。但是,这种同步发送机制的发送效率比较低。毕竟,send方法需要消息在生产者和Broker之间传输一个来回后才能结束。如果网速比较慢,同步发送的耗时就会很长。

异步发送

       异步发送机制下,生产者在向Broker发送消息时,会同时注册一个回调函数。接下来生产者并不等待Broker的响应。当Broker端有响应数据过来时,自动触发回调函数进行对应的处理。这就好比生产者向Broker发电子邮件通知时,另外找了一个代理人专门等待Broker的响应。而生产者自己则发完消息后就去做其他的事情去了。

	producer.send(msg, new SendCallback() {
                    @Override
                    public void onSuccess(SendResult sendResult) {
                        countDownLatch.countDown();
                        System.out.printf("%-10d OK %s %n", index, sendResult.getMsgId());
                    }
                    @Override
                    public void onException(Throwable e) {
                        countDownLatch.countDown();
                        System.out.printf("%-10d Exception %s %n", index, e);
                        e.printStackTrace();
                    }
                });

       在SendCallback接口中有两个方法,onSuccess和onException。当Broker端返回消息处理成功的响应信息SendResult时,就会调用onSuccess方法。当Broker端处理消息超时或者失败时,就会调用onExcetion方法,生产者就可以在onException方法中进行补救措施。

       此时同样有几个问题需要注意。一是与同步发送机制类似,触发了SendCallback的onException方法同样并不一定就表示消息不会向消费者推送。如果Broker端返回响应信息太慢,超过了超时时间,也会触发onException方法。超时时间默认是3秒,可以通过producer.setSendMsgTimeout方法定制。而造成超时的原因则有很多,消息太大造成网络拥堵、网速太慢、Broker端处理太慢等都可能造成消息处理超时。

​        二是在SendCallback的对应方法被触发之前,生产者不能调用shutdown()方法。如果消息处理完之前,生产者线程就关闭了,生产者的SendCallback对应方法就不会触发。这是因为使用异步发送机制后,生产者虽然不用阻塞下来等待Broker端响应,但是SendCallback还是需要附属于生产者的主线程才能执行。如果Broker端还没有返回SendResult,而生产者主线程已经停止了,那么SendCallback的执行线程也就会随主线程一起停止,对应的方法自然也就无法执行了。

       这种异步发送的机制能够比较好的兼容消息的安全性以及生产者的高吞吐需求,是很多MQ产品都支持的方式。RabbitMQ和Kafka都支持这种异步发送的机制。但是异步发送机制也并不是万能的,毕竟异步发送机制对消息生产者的主线业务是有侵入的。具体使用时还是需要根据业务场景考虑。

       RocketMQ提供的这三种发送消息的方式,并不存在绝对的好坏之分。我们更多的是需要根据业务场景进行选择。例如在电商下单这个场景,我们就应该尽量选择同步发送或异步发送,优先保证数据安全。然后,如果下单场景的并发比较高,业务比较繁忙,就应该尽量优先选择异步发送的机制。这时,我们就应该对下单服务的业务进行优化定制,尽量适应异步发送机制的要求。这样就可以尽量保证下单服务能够比较可靠的将用户的订单消息发送到RocketMQ了。

2、消息消费者端采用状态确认机制保证消费者一定能正常处理对应的消息

consumer.registerMessageListener(new MessageListenerConcurrently() {
            @Override
            public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) {
                System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
                return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
            }
        });

        这个返回值是一个枚举值,有两个选项CONSUME_SUCCESS和RECONSUME_LATER。如果消费者返回CONSUME_SUCCESS,那么消息自然就处理结束了。但是如果消费者没有处理成功,返回的是RECONSUME_LATER,Broker就会过一段时间再发起消息重试。

       Broker不可能无限制的向消费失败的消费者推送消息。如果消费者一直没有恢复,Broker显然不可能一直无限制的推送,这会浪费集群很多的性能。所以,Broker会记录每一个消息的重试次数。如果一个消息经过很多次重试后,消费者依然无法正常处理,那么Broker会将这个消息推入到消费者组对应的死信Topic中。死信Topic相当于windows当中的垃圾桶。你可以人工介入对死信Topic中的消息进行补救,也可以直接彻底删除这些消息。RocketMQ默认的最大重试次数是16次。

       为了让这些重试的消息不会影响Topic下其他正常的消息,Broker会给每个消费者组设计对应的重试Topic。MessageQueue是一个具有严格FIFO特性的数据结构。如果需要重试的这些消息还是放在原来的MessageQueue中,就会对当前MessageQueue产生阻塞,让其他正常的消息无法处理。RocketMQ的做法是给每个消费者组自动生成一个对应的重试Topic。在消息需要重试时,会先移动到对应的重试Topic中。后续Broker只要从这些重试Topic中不断拿出消息,往消费者组重新推送即可。这样,这些重试的消息有了自己单独的队列,就不会影响到Topic下的其他消息了。

       Broker端最终只通过消费者组返回的状态来确定消息有没有处理成功。至于消费者组自己的业务执行是否正常,Broker端是没有办法知道的。因此,在实现消费者的业务逻辑时,应该要尽量使用同步实现方式,保证在自己业务处理完成之后再向Broker端返回状态。而应该尽量避免异步的方式处理业务逻辑。

3、消费者也可以自行指定起始消费位点

       Broker端通过Consumer返回的状态来推进所属消费者组对应的Offset。但是,这里还是会造成一种分裂,消息最终是由Consumer来处理,但是消息却是由Broker推送过来的,也就是说,Consumer无法确定自己将要处理的是哪些消息。

       对消息队列也一样。虽然Offset完全由Broker进行维护,但是,RocketMQ也允许Consumer自己去查账,自己指定消费位点。核心代码是在Consumer中设定了一个属性ConsumeFromWhere,表示在Consumer启动时,从哪一条消息开始进行消费。Consumer当然不可能精确的知道Offset的具体参数,所以这个ConsumerFromWhere并不是直接传入Offset位点,而是可以传入一个ConsumerFromWhere对象,这是一个枚举值。名字一目了然。

public enum ConsumeFromWhere {
    CONSUME_FROM_LAST_OFFSET, //从队列的第一条消息开始重新消费
    CONSUME_FROM_FIRST_OFFSET, //从上次消费到的地方开始继续消费
    CONSUME_FROM_TIMESTAMP; //从某一个时间点开始重新消费
}

​        另外,如果指定了ConsumerFromWhere.CONSUME_FROM_TIMESTAMP,这就表示要从一个具体的时间开始。具体时间点,需要通过Consumer的另一个属性ConsumerTimestamp。这个属性可以传入一个表示时间的字符串。

consumer.setConsumerTimestamp("20131223171201");

广播消息

应用场景:

       广播模式和集群模式是RocketMQ的消费者端处理消息最基本的两种模式。集群模式下,一个消息,只会被一个消费者组中的多个消费者实例共同处理一次。广播模式下,一个消息,则会推送给所有消费者实例处理,不再关心消费者组。

​ 消费者核心代码

consumer.setMessageModel(MessageModel.BROADCASTING);

启动多个消费者,广播模式下,这些消费者都会消费一次消息。

实现思路:

       默认模式(也就是集群模式)下,Broker端会给每个ConsumerGroup维护一个统一的Offset,这个Offset可以保证一个消息,在同一个ConsumerGroup内只会被消费一次。而广播模式的实现方式,是将Offset转移到消费者端自行保管,这样Broker端只管向所有消费者推送消息,而不用负责维护消费进度。

注意点:

1、Broker端不维护消费进度,意味着,如果消费者处理消息失败了,将无法进行消息重试。

2、消费者端维护Offset的作用是可以在服务重启时,按照上一次消费的进度,处理后面没有消费过的消息。丢了也不影响服务稳定性。


顺序消息机制

应用场景:

​        每一个订单有从下单、锁库存、支付、下物流等几个业务步骤。每个业务步骤都由一个消息生产者通知给下游服务。可以通过顺序消费机制保证对每个订单的业务处理顺序不乱。

示例代码:

​ 生产者核心代码:

for (int i = 0; i < 10; i++) {
                int orderId = i;
                for(int j = 0 ; j <= 5 ; j ++){
                    Message msg =
                            new Message("OrderTopicTest", "order_"+orderId, "KEY" + orderId,
                                    ("order_"+orderId+" step " + j).getBytes(RemotingHelper.DEFAULT_CHARSET));
                    SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
                        @Override
                        public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
                            Integer id = (Integer) arg;
                            int index = id % mqs.size();
                            return mqs.get(index);
                        }
                    }, orderId);
                    System.out.printf("%s%n", sendResult);
                }
            }

通过MessageSelector,将orderId相同的消息,都转发到同一个MessageQueue中。

​ 消费者核心代码:

consumer.registerMessageListener(new MessageListenerOrderly() {
            @Override
            public ConsumeOrderlyStatus consumeMessage(List<MessageExt> msgs, ConsumeOrderlyContext context) {
                context.setAutoCommit(true);
                for(MessageExt msg:msgs){
                    System.out.println("收到消息内容 "+new String(msg.getBody()));
                }
                return ConsumeOrderlyStatus.SUCCESS;
            }
        });

​ 注入一个MessageListenerOrderly实现。

                

​ 1、生产者只有将一批有顺序要求的消息,放到同一个MesasgeQueue上,Broker才有可能保持这一批消息的顺序。

​ 2、消费者只有一次锁定一个MessageQueue,拿到MessageQueue上所有的消息,


延迟消息

生产者端核心代码:

msg.setDelayTimeLevel(3);

​ 只要给消息设定一个延迟级别就行了。

RocketMQ给消息定制了18个默认的延迟级别,分别对应18个不同的预设好的延迟时间。

 实现思路:

       延迟消息的难点其实是性能,需要不断进行定时轮训。全部扫描所有消息是不可能的,RocketMQ的实现方式是预设一个系统Topic,名字叫做SCHEDULE_TOPIC_XXXX。在这个Topic下,预设18个延迟队列。然后每次只针对这18个队列里的消息进行延迟操作,这样就不用一直扫描所有的消息了。


批量消息

应用场景:

​       生产者要发送的消息比较多时,可以将多条消息合并成一个批量消息,一次性发送出去。这样可以减少网络IO,提升消息发送的吞吐量。

示例代码:

生产者核心代码:

        List<Message> messages = new ArrayList<>();
        messages.add(new Message(topic, "Tag", "OrderID001", "Hello world 0".getBytes()));
        messages.add(new Message(topic, "Tag", "OrderID002", "Hello world 1".getBytes()));
        messages.add(new Message(topic, "Tag", "OrderID003", "Hello world 2".getBytes()));

        producer.send(messages);

注意点:

​       批量消息的使用非常简单,但是要注意RocketMQ做了限制。同一批消息的Topic必须相同,另外,不支持延迟消息。还有批量消息的大小不要超过1M,如果太大就需要自行分割。


过滤消息

应用场景:

同一个Topic下有多种不同的消息,消费者只希望关注某一类消息。

示例代码:

生产者端需要在发送消息时,增加Tag属性。

        String[] tags = new String[] {"TagA", "TagB", "TagC"};

        for (int i = 0; i < 15; i++) {
            Message msg = new Message("TagFilterTest",
                tags[i % tags.length],
                "Hello world".getBytes(RemotingHelper.DEFAULT_CHARSET));
            SendResult sendResult = producer.send(msg);
            System.out.printf("%s%n", sendResult);
        }

消费者端就可以通过这个Tag属性订阅自己感兴趣的内容。核心代码:

        consumer.subscribe("TagFilterTest", "TagA");

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1441944.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学习Pytorch深度学习运行AlexNet代码时关于在Pycharm中解决 “t >= 0 t < n_classes” 的断言错误方法

在学习深度学习的过程中&#xff0c;遇到了一个报错&#xff1a; 这跑的代码是AlexNet的代码实现。 运行时出现报错&#xff1a; C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\cuda\Loss.cu:257: block: [0,0,0], thread: [4,0,0] Assertion t > 0 && t…

[职场] 公务员面试停顿磕巴常见吗 #学习方法#知识分享#知识分享

公务员面试停顿磕巴常见吗 面试时说话磕巴简直是太常见了&#xff0c;对于一个新问题&#xff0c;让人在短时间内&#xff0c;并且仅仅是三分钟内&#xff0c;就组织起一个答案&#xff0c;还无法全部打手稿&#xff0c;这对于连上个讲台都会脸发红的人来说&#xff0c;简直是一…

前端JavaScript篇之如何获得对象非原型链上的属性?

目录 如何获得对象非原型链上的属性&#xff1f; 如何获得对象非原型链上的属性&#xff1f; 要获取对象上非原型链上的属性&#xff0c;可以使用 hasOwnProperty() 方法。这个方法是 JavaScript 内置的对象方法&#xff0c;用于检查一个对象是否包含指定名称的属性&#xff0…

TP-LINK今年的年终奖。。

TP-LINK 年终奖 如果说昨天爆料的「浦发银行年终奖&#xff0c;一书抵万金」还稍有争议&#xff08;有些说没发&#xff0c;有些说 3/4/5 折&#xff09;&#xff0c;那今天的 TP-LINK 则是毫无悬念。 据在职的 TP-LINK 技术员工爆料&#xff1a;入职时说好的 16 薪&#xff0c…

day45_maven_tomcat

今日内容 0 复习昨日 1 maven 2 tomcat 3 创建项目 0 复习昨日 1 单词写5遍 argument 参数 parameter 参数 access 访问 field 字段 invoke 调用 illegal 非法 invalid 无效 column 列 property 属性 DataSource 数据源 2 数据库连接池有啥好处 3 获得字节码文件的方式 Class.f…

ChatGPT高效提问—prompt常见用法(续篇七)

ChatGPT高效提问—prompt常见用法&#xff08;续篇七&#xff09; 1.1 零样本、单样本和多样本 ​ ChatGPT拥有令人惊叹的功能和能力&#xff0c;允许用户自由向其提问&#xff0c;无须提供任何具体的示例样本&#xff0c;就可以获得精准的回答。这种特性被称为零样本&#x…

使用CHATGPT进行论文写作的缺点和风险

为了真正感受 ChatGPT 的写作潜力&#xff0c;让我们先将其与传统的论文写作方法进行一下比较分析 CHATGPT论文写作的缺点和风险 传统论文写作的考验和磨难很深&#xff1a;费力的研究、组织想法和精心设计的逻辑论证&#xff0c;往往以牺牲你的理智为代价。 进入ChatGPT&am…

Linux下的多用户管理和认证:从入门到精通(附实例)

Linux操作系统以其强大的多用户管理和认证机制而著称。这种机制不仅允许多个用户同时登录并执行各种任务&#xff0c;还能确保每个用户的数据安全和隐私。本文将通过一系列实例&#xff0c;带你逐步掌握Linux下的多用户管理和认证。 一、Linux多用户管理的基础知识 在Linux中&…

Bootstrap学习三

Bootstrap学习三 文章目录 前言四、Bootstrap插件4.1. 插件概览4.1.1. data属性4.1.2. 编程方式的API4.1.3. 避免命名空间冲突4.1.4. 事件 4.2. 模态框4.2.1. 引入4.2.2. 基本结构4.2.3. 基本使用4.2.4. 触发模态框的方法 4.3. 下拉菜单和滚动监听4.3.1. 下拉菜单4.3.2. 滚动监…

祝大家春节快乐

文章目录 祝福年俗交流 祝福 今天是大年三十&#xff0c;也就是除夕&#xff0c;这是全画人民欢庆春节的日子&#xff0c;在此辞旧迎新之际&#xff0c;我祝愿所有的粉丝们春节快乐&#xff0c;身体健康&#xff0c;万事如意。也祝愿我们伟大的祖国繁荣昌盛&#xff0c;龙腾虎…

《MySQL 简易速速上手小册》第9章:高级 MySQL 特性和技巧(2024 最新版)

文章目录 9.1 使用存储过程和触发器9.1.1 基础知识9.1.2 重点案例&#xff1a;使用 Python 调用存储过程实现用户注册9.1.3 拓展案例 1&#xff1a;利用触发器自动记录数据更改历史9.1.4 拓展案例 2&#xff1a;使用 Python 和触发器实现数据完整性检查 9.2 管理和查询 JSON 数…

基于LLM的数据漂移和异常检测

大型语言模型 (LLM) 的最新进展被证明是许多领域的颠覆性力量&#xff08;请参阅&#xff1a;通用人工智能的火花&#xff1a;GPT-4 的早期实验&#xff09;。 和许多人一样&#xff0c;我们非常感兴趣地关注这些发展&#xff0c;并探索LLM影响数据科学和机器学习领域的工作流程…

你的立身之本是什么?

去年发生的一切&#xff0c;大到疫情、政治经济形势、行业的萎靡和震荡&#xff0c;小到身边的跳槽、裁员、公司倒闭……似乎都在告诉我们&#xff1a; 当冲击到来的时候&#xff0c;它是不会提前跟你打招呼的。 接下来的10年&#xff0c;我们所面临的不确定性&#xff0c;比起…

技术精英求职必备:Java开发工程师简历制作全指南

投简历找工作嘛&#xff0c;这事儿其实就跟相亲差不多&#xff0c;得让对方一眼就看上你。 在这场职场的‘相亲’中&#xff0c;怎样才能让你的简历脱颖而出&#xff0c;成为HR眼中的理想‘对象’呢&#xff1f;来&#xff0c;我给你支几招&#xff0c;让你的简历更吸引人。 …

windows编程-系统编程入门

1.进程线程概念&#xff08;简略版&#xff09; 1.1 进程 1.1.1 概念 我们编写的代码只是一个存储在硬盘的静态文件&#xff0c;通过编译后就会生成二进制可执行文件&#xff0c;当我们运行这个可执行文件后&#xff0c;它会被装载到内存中&#xff0c;接着 CPU 会执行程序中…

除夕快乐(前端小烟花)

家人们&#xff0c;新的一年好运常在&#xff0c;愿大家在新的一年里得偿所愿&#xff0c;发财暴富&#xff0c;愿大家找到属于自己的那个公主&#xff0c;下面就给大家展示一下给公主的烟花 前端烟花 新的一年&#xff0c;新的挑战&#xff0c;愿我们不忘初心&#xff0c;砥砺…

HarmonyOS 开发学习笔记

HarmonyOS 开发学习笔记 一、开发准备1.1、了解ArkTs语言1.2、TypeScript语法1.2.1、变量声明1.2.2、条件控制1.2.3、函数1.2.4、类和接口1.2.5、模块开发 1.3、快速入门 二、ArkUI组件2.1、Image组件2.2、Text文本显示组件2.3、TextInput文本输入框组件2.4、Button按钮组件2.5…

备战蓝桥杯---搜索(完结篇)

再看一道不完全是搜索的题&#xff1a; 解法1&#xff1a;贪心并查集&#xff1a; 把冲突事件从大到小排&#xff0c;判断是否两个在同一集合&#xff0c;在的话就返回&#xff0c;不在的话就合并。 下面是AC代码&#xff1a; #include<bits/stdc.h> using namespace …

Bee+SpringBoot稳定的Sharding、Mongodb ORM功能(同步 Maven)

Hibernate/MyBatis plus Sharding JDBC Jpa Spring data GraphQL App ORM (Android, 鸿蒙) Bee 小巧玲珑&#xff01;仅 860K, 还不到 1M, 但却是功能强大&#xff01; V2.2 (2024春节・LTS 版) 1.Javabean 实体支持继承 (配置 bee.osql.openEntityCanExtendtrue) 2. 增强批…

放飞梦想,扬帆起航——1888粉丝福利总结

目录 1.祝福 2.准备 3.抽奖 4.制作 5.添加 6.成果 7.感谢 8.福利 9.祝福 1.祝福 马上就是除夕了&#xff0c;在这里提前预祝大家春节快乐&#xff0c;小芒果在这里给大家拜年了&#xff01; 2.准备 其实很早之前我就在幻想着哪一天我的粉丝量能突破1888&#xff0c;…