机器学习系列——(十一)回归

news2025/1/19 2:32:54

引言

在机器学习领域,回归是一种常见的监督学习任务,它主要用于预测数值型目标变量。回归分析能够通过对输入特征与目标变量之间的关系建模,从而对未知数据做出预测。

概念

回归是机器学习中的一种监督学习方法,用于预测数值型目标变量。它通过建立特征与目标变量之间的关系模型,对未知数据做出预测。

举个例子来说明回归的概念:

假设我们希望根据房屋的面积来预测其价格。我们可以收集一组包含多个房屋的数据样本,每个样本包含房屋的面积和对应的价格。这些数据样本就构成了我们的训练集。

回归模型的目标是找到一个函数来描述输入特征(房屋的面积)与目标变量(价格)之间的关系。在简单线性回归中,我们假设房屋的价格与面积之间存在着线性关系,即价格可以用面积来预测。我们可以使用最小二乘法来拟合一条直线,使得该直线与所有样本点的误差最小化。

通过得到回归模型,我们可以对未知的房屋面积进行预测。例如,如果有一座新的房屋,我们知道它的面积是100平方米,那么通过回归模型,我们可以预测其价格为150万元。

需要注意的是,回归并不仅限于简单的直线拟合,我们还可以使用多项式回归来描述非线性关系,或者使用其他更复杂的回归算法进行建模。回归模型在许多领域都有广泛的应用,如金融预测、销售预测、医学研究等。它能够帮助我们理解变量之间的关系,并进行准确的数值预测。

常见的回归算法:

  1. 线性回归(Linear Regression): 线性回归是一种基本且常用的回归算法。它通过拟合一个线性模型来描述特征与目标变量之间的关系。线性回归假设输入特征与目标变量之间存在线性关系,并使用最小二乘法来估计模型参数。线性回归易于实现和解释,但对于非线性关系的数据拟合效果较差。

  2. 多项式回归(Polynomial Regression): 多项式回归是在线性回归的基础上引入多项式特征的一种扩展形式。通过将特征进行多项式转换,可以更好地拟合复杂的非线性关系。多项式回归能够提高模型的灵活性,但在高维度的情况下容易发生过拟合。

  3. 岭回归(Ridge Regression): 岭回归是一种正则化线性回归算法,通过加入L2正则化项来缩减模型参数的大小。L2正则化能够有效地减小模型的方差,降低过拟合的风险。岭回归适用于特征之间存在共线性的情况,可以提高模型的泛化能力。

  4. Lasso回归(Lasso Regression): Lasso回归是一种使用L1正则化的线性回归算法。与岭回归不同,Lasso回归能够将某些模型参数压缩为零,实现特征选择的效果。L1正则化具有稀疏性,因此Lasso回归常被用于特征选择和模型简化。

  5. 决策树回归(Decision Tree Regression): 决策树回归是一种非参数化的回归算法,它将输入空间划分为多个区域,并在每个区域内拟合一个局部模型。决策树回归适用于复杂的非线性关系,并且能够处理离散型和连续型特征。然而,决策树容易产生过拟合,因此常常需要剪枝等策略来提高泛化性能。

  6. 随机森林回归(Random Forest Regression): 随机森林回归是基于决策树的集成学习方法,通过随机选择特征和样本来构建多个决策树。随机森林回归具有较强的鲁棒性和泛化能力,能够应对高维度数据和噪声。此外,它还可以评估特征的重要性,用于特征选择和解释模型。

  7. 支持向量回归(Support Vector Regression, SVR): 支持向量回归是一种使用支持向量机(SVM)技术进行回归分析的方法。SVR通过将目标变量与一条超平面之间的间隔最大化来拟合模型。SVR适用于非线性关系和高维度数据,并具有较好的泛化性能。然而,SVR对参数的选择敏感,需要进行调优。

总结

本篇博客简单介绍了回归的概念和几种常见的回归算法,包括线性回归、多项式回归、岭回归、Lasso回归、决策树回归、随机森林回归和支持向量回归。每种算法都有其特点和适用范围,可以根据具体问题选择合适的回归算法进行建模和预测。在实际应用中,还可以结合特征工程、模型评估和调参等技巧进一步优化回归模型的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1441691.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HarmonyOS 创建components目录 定义全局自定义组件导出供整个项目使用

之前我的文章 harmonyOS 自定义组件基础演示讲解 我们讲解了 自定义组件的基础用法 但是 我们是写在单个page文件中的 这样 我们跨文件使用就很不友好了 如下图 指向 ets目录下 创建一个目录 按我们 前端开发以往的习惯 这个目录要叫 components 专门放组件集合的地方 然后 按…

Windows Server 2025 Hyper-V 新变化

今天简单跟大家聊聊Windows Server 2025 Hyper-V一些新功能新变化,具体如下: 在 VM 之间共享 GPU 随着图形处理器的重要性日益增加,特别是由于它们在 AI 应用程序中的核心作用,Hyper-V 中对 GPU 的现有支持已不再足够。到目前为…

GPT-4模型中的token和Tokenization概念介绍

Token从字面意思上看是游戏代币,用在深度学习中的自然语言处理领域中时,代表着输入文字序列的“代币化”。那么海量语料中的文字序列,就可以转化为海量的代币,用来训练我们的模型。这样我们就能够理解“用于GPT-4训练的token数量大…

【MySQL】MySQL表的增删改查(基础)

MySQL表的增删改查(基础) 1. CRUD2. 新增(Create)2.1 单行数据全列插入2.2 多行数据 指定列插入 3. 查询(Retrieve)3.1 全列查询3.2 指定列查询3.3 查询字段为表达式3.4 别名3.5 去重:DISTINCT…

数据结构——单向链表和双向链表的实现(C语言版)

目录 前言 1. 链表 1.1 链表的概念及结构 1.2 链表的分类 2. 单链表接口实现 2.1 数据结构设计与接口函数声明 2.2 创建结点,打印,查找 2.3 尾插,头插,尾删,头删 2.4 插入或删除 2.4.1在指定位置后 2.4.2在…

一文讲透Python函数中的形式参数和实际参数

函数参数包括形式参数和实际参数,简称形参和实参。其中形式参数即是在定义函数时函数后面括号中的参数列表(parameterlist),比如上一个帖子的示例中的width, length;实际参数则是调用函数时函数后面括号中的参数值&…

【OrangePi Zero2的系统移植】OrangePi Zero2 SDK说明

一、使用环境要求 二、获取Linux SDK 三、首次编译完整SDK 基于OrangePi Zero2的系统移植 之前我们讲解香橙派的使用时, 都是直接在香橙派上进行代码编译, 但在实际的项目开发过程中,更多 的还是使用交叉编译环境进行代码的编译。再编译完成…

学习Android的第八天

目录 Android ImageView 图像视图 ImageView 的基本使用 src属性和background属性的区别 范例 解决 anndroid:blackground 属性拉伸导致图片变形的方法 设置透明度的问题 范例 android:src 和 android:background 结合 范例 Java 代码中设置 blackground 和 src 属性…

【C语言自定义类型详解进阶】结构体(补充结构体的对齐和位段,一口气看完系列,央妈都点赞的博文)

目录 1.结构体 1.1 结构的基础知识 1.2 结构的声明 1.2.1特殊的声明(匿名结构体类型) 1.3结构体变量的定义 1.4关于匿名结构体类型的补充 1.5结构体的自引用 1.6结构体变量的初始化 2.结构体内存对齐(重点) 2.1偏移量补…

B2080 计算多项式的值(洛谷)

题目描述 假定多项式的形式为 … x1,请计算给定单精度浮点数 x 和正整数 n 值的情况下这个多项式的值。多项式的值精确到小数点后两位,保证最终结果在 double 范围内。 输入格式 输入仅一行,包括 x 和 n,用单个空格隔开。 输…

数据结构 - 线索树

一、 为什么要用到线索二叉树? 我们先来看看普通的二叉树有什么缺点。下面是一个普通二叉树(链式存储方式): 乍一看,会不会有一种违和感?整个结构一共有 7 个结点,总共 14 个指针域&#xff0c…

Web前端框架-Vue(初识)

文章目录 web前端三大主流框架**1.Angular****2.React****3.Vue**什么是Vue.js 为什么要学习流行框架框架和库和插件的区别一.简介指令v-cloakv-textv-htmlv-pre**v-once**v-onv-on事件函数中传入参数事件修饰符双向数据绑定v-model 按键修饰符自定义按键修饰符别名v-bind(属性…

速过计算机二级python——第9讲 详解第 2 套真题

第9讲 详解第 2 套真题 基本编程题【15 分】简单应用题【25 分】综合应用题【20 分】**问题 1**【10 分】:**问题 2【10 分】:**基本编程题【15 分】 考生文件夹下存在一个文件 PY101.py,请写代码替换横线,不修改其他代码,实现以下功能:【5 分】题目: import __________ b…

【数据结构与算法】力扣刷题记之 稀疏数组

🎉🎉欢迎光临🎉🎉 🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀 🌟特别推荐给大家我的最新专栏《数据结构与算法:初学者入门指南》📘&am…

手把手教你开发Python桌面应用-PyQt6图书管理系统-图书添加模块UI设计实现

锋哥原创的PyQt6图书管理系统视频教程: PyQt6图书管理系统视频教程 Python桌面开发 Python入门级项目实战 (无废话版) 火爆连载更新中~_哔哩哔哩_bilibiliPyQt6图书管理系统视频教程 Python桌面开发 Python入门级项目实战 (无废话版) 火爆连载更新中~共计24条视频&…

ClickHouse的优缺点和应用场景

当业务场景需要一个大批量、快速的、可支持聚合运算的数据库,那么可选择ClickHouse。 选择ClickHouse 的原因: 记录类型类似于LOG,读取、运算远远大于写入操作选取有限列,对近千万条数据,快算的运算出结果。数据批量…

LiteFlow规则引擎框架

LiteFlow规则引擎框架 Hi,我是阿昌,今天介绍一个规则引擎框架,LiteFlow; 一、前言 那首先得知道什么是规则引擎?规则引擎是 一种用于自动化处理业务规则的软件组件。 在软件行业中,规则引擎通常用于解决…

HTML+CSS+JS网页设计

文章目录 作品介绍一、代码演示1.登录、注册,获取当前时间2.轮播图3.家乡简介4.热门景点5.特色美食6.页尾 二、效果图总结 作品介绍 HTML页面主要由:登录、注册跳转页面,轮播图,家乡简介,热门景点,特色美食…

js中new操作符详解

文章目录 一、是什么二、流程三、手写new操作符 一、是什么 在JavaScript中,new操作符用于创建一个给定构造函数的实例对象 例子 function Person(name, age){this.name name;this.age age; } Person.prototype.sayName function () {console.log(this.name) …