Java基础常见面试题总结-并发(一)

news2024/11/15 13:03:45

线程池

线程池:一个管理线程的池子。

为什么平时都是使用线程池创建线程,直接new一个线程不好吗?

嗯,手动创建线程有两个缺点

  1. 不受控风险
  2. 频繁创建开销大

为什么不受控

系统资源有限,每个人针对不同业务都可以手动创建线程,并且创建线程没有统一标准,比如创建的线程有没有名字等。当系统运行起来,所有线程都在抢占资源,毫无规则,混乱场面可想而知,不好管控。

频繁手动创建线程为什么开销会大?跟new Object() 有什么差别?

虽然Java中万物皆对象,但是new Thread() 创建一个线程和 new Object()还是有区别的。

new Object()过程如下:

  1. JVM分配一块内存 M
  2. 在内存 M 上初始化该对象
  3. 将内存 M 的地址赋值给引用变量 obj

创建线程的过程如下:

  1. JVM为一个线程栈分配内存,该栈为每个线程方法调用保存一个栈帧
  2. 每一栈帧由一个局部变量数组、返回值、操作数堆栈和常量池组成
  3. 每个线程获得一个程序计数器,用于记录当前虚拟机正在执行的线程指令地址
  4. 系统创建一个与Java线程对应的本机线程
  5. 将与线程相关的描述符添加到JVM内部数据结构中
  6. 线程共享堆和方法区域

创建一个线程大概需要1M左右的空间(Java8,机器规格2c8G)。可见,频繁手动创建/销毁线程的代价是非常大的。

为什么使用线程池?

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,可以不需要等到线程创建就能立即执行。
  • 提高线程的可管理性。统一管理线程,避免系统创建大量同类线程而导致消耗完内存。

线程池执行原理?

线程池执行流程

  1. 当线程池里存活的线程数小于核心线程数corePoolSize时,这时对于一个新提交的任务,线程池会创建一个线程去处理任务。当线程池里面存活的线程数小于等于核心线程数corePoolSize时,线程池里面的线程会一直存活着,就算空闲时间超过了keepAliveTime,线程也不会被销毁,而是一直阻塞在那里一直等待任务队列的任务来执行。
  2. 当线程池里面存活的线程数已经等于corePoolSize了,这是对于一个新提交的任务,会被放进任务队列workQueue排队等待执行。
  3. 当线程池里面存活的线程数已经等于corePoolSize了,并且任务队列也满了,假设maximumPoolSize>corePoolSize,这时如果再来新的任务,线程池就会继续创建新的线程来处理新的任务,知道线程数达到maximumPoolSize,就不会再创建了。
  4. 如果当前的线程数达到了maximumPoolSize,并且任务队列也满了,如果还有新的任务过来,那就直接采用拒绝策略进行处理。默认的拒绝策略是抛出一个RejectedExecutionException异常。

线程池参数有哪些?

ThreadPoolExecutor 的通用构造函数:

public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler);

1、corePoolSize:当有新任务时,如果线程池中线程数没有达到线程池的基本大小,则会创建新的线程执行任务,否则将任务放入阻塞队列。当线程池中存活的线程数总是大于 corePoolSize 时,应该考虑调大 corePoolSize。

2、maximumPoolSize:当阻塞队列填满时,如果线程池中线程数没有超过最大线程数,则会创建新的线程运行任务。否则根据拒绝策略处理新任务。非核心线程类似于临时借来的资源,这些线程在空闲时间超过 keepAliveTime 之后,就应该退出,避免资源浪费。

3、BlockingQueue:存储等待运行的任务。

4、keepAliveTime非核心线程空闲后,保持存活的时间,此参数只对非核心线程有效。设置为0,表示多余的空闲线程会被立即终止。

5、TimeUnit:时间单位

TimeUnit.DAYS
TimeUnit.HOURS
TimeUnit.MINUTES
TimeUnit.SECONDS
TimeUnit.MILLISECONDS
TimeUnit.MICROSECONDS
TimeUnit.NANOSECONDS

6、ThreadFactory:每当线程池创建一个新的线程时,都是通过线程工厂方法来完成的。在 ThreadFactory 中只定义了一个方法 newThread,每当线程池需要创建新线程就会调用它。

public class MyThreadFactory implements ThreadFactory {
    private final String poolName;
    
    public MyThreadFactory(String poolName) {
        this.poolName = poolName;
    }
    
    public Thread newThread(Runnable runnable) {
        return new MyAppThread(runnable, poolName);//将线程池名字传递给构造函数,用于区分不同线程池的线程
    }
}

7、RejectedExecutionHandler:当队列和线程池都满了的时候,根据拒绝策略处理新任务。

AbortPolicy:默认的策略,直接抛出RejectedExecutionException
DiscardPolicy:不处理,直接丢弃
DiscardOldestPolicy:将等待队列队首的任务丢弃,并执行当前任务
CallerRunsPolicy:由调用线程处理该任务

线程池大小怎么设置?

如果线程池线程数量太小,当有大量请求需要处理,系统响应比较慢,会影响用户体验,甚至会出现任务队列大量堆积任务导致OOM。

如果线程池线程数量过大,大量线程可能会同时抢占 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了执行效率。

CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,多出来的一个线程是为了防止某些原因导致的线程阻塞(如IO操作,线程sleep,等待锁)而带来的影响。一旦某个线程被阻塞,释放了CPU资源,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。

I/O 密集型任务(2N): 系统的大部分时间都在处理 IO 操作,此时线程可能会被阻塞,释放CPU资源,这时就可以将 CPU 交出给其它线程使用。因此在 IO 密集型任务的应用中,可以多配置一些线程,具体的计算方法:最佳线程数 = CPU核心数 * (1/CPU利用率) = CPU核心数 * (1 + (IO耗时/CPU耗时)),一般可设置为2N。

线程池的类型有哪些?适用场景?

常见的线程池有 FixedThreadPoolSingleThreadExecutorCachedThreadPoolScheduledThreadPool。这几个都是 ExecutorService 线程池实例。

FixedThreadPool

固定线程数的线程池。任何时间点,最多只有 nThreads 个线程处于活动状态执行任务。

public static ExecutorService newFixedThreadPool(int nThreads) {
	return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>());
}

使用无界队列 LinkedBlockingQueue(队列容量为 Integer.MAX_VALUE),运行中的线程池不会拒绝任务,即不会调用RejectedExecutionHandler.rejectedExecution()方法。

maxThreadPoolSize 是无效参数,故将它的值设置为与 coreThreadPoolSize 一致。

keepAliveTime 也是无效参数,设置为0L,因为此线程池里所有线程都是核心线程,核心线程不会被回收(除非设置了executor.allowCoreThreadTimeOut(true))。

适用场景:适用于处理CPU密集型的任务,确保CPU在长期被工作线程使用的情况下,尽可能的少的分配线程,即适用执行长期的任务。需要注意的是,FixedThreadPool 不会拒绝任务,在任务比较多的时候会导致 OOM。

SingleThreadExecutor

只有一个线程的线程池。

public static ExecutionService newSingleThreadExecutor() {
	return new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>());
}

使用无界队列 LinkedBlockingQueue。线程池只有一个运行的线程,新来的任务放入工作队列,线程处理完任务就循环从队列里获取任务执行。保证顺序的执行各个任务。

适用场景:适用于串行执行任务的场景,一个任务一个任务地执行。在任务比较多的时候也是会导致 OOM。

CachedThreadPool

根据需要创建新线程的线程池。

public static ExecutorService newCachedThreadPool() {
	return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>());
}

如果主线程提交任务的速度高于线程处理任务的速度时,CachedThreadPool 会不断创建新的线程。极端情况下,这样会导致耗尽 cpu 和内存资源。

使用没有容量的SynchronousQueue作为线程池工作队列,当线程池有空闲线程时,SynchronousQueue.offer(Runnable task)提交的任务会被空闲线程处理,否则会创建新的线程处理任务。

适用场景:用于并发执行大量短期的小任务。CachedThreadPool允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。

ScheduledThreadPoolExecutor

在给定的延迟后运行任务,或者定期执行任务。在实际项目中基本不会被用到,因为有其他方案选择比如quartz

使用的任务队列 DelayQueue 封装了一个 PriorityQueuePriorityQueue 会对队列中的任务进行排序,时间早的任务先被执行(即ScheduledFutureTasktime 变量小的先执行),如果time相同则先提交的任务会被先执行(ScheduledFutureTasksquenceNumber 变量小的先执行)。

执行周期任务步骤:

  1. 线程从 DelayQueue 中获取已到期的 ScheduledFutureTask(DelayQueue.take())。到期任务是指 ScheduledFutureTask的 time 大于等于当前系统的时间;
  2. 执行这个 ScheduledFutureTask
  3. 修改 ScheduledFutureTask 的 time 变量为下次将要被执行的时间;
  4. 把这个修改 time 之后的 ScheduledFutureTask 放回 DelayQueue 中(DelayQueue.add())。

img

适用场景:周期性执行任务的场景,需要限制线程数量的场景。

怎么判断线程池的任务是不是执行完了?

有几种方法:

1、使用线程池的原生函数isTerminated();

executor提供一个原生函数isTerminated()来判断线程池中的任务是否全部完成。如果全部完成返回true,否则返回false。

2、使用重入锁,维持一个公共计数

所有的普通任务维持一个计数器,当任务完成时计数器加一(这里要加锁),当计数器的值等于任务数时,这时所有的任务已经执行完毕了。

3、使用CountDownLatch

它的原理跟第二种方法类似,给CountDownLatch一个计数值,任务执行完毕后,调用countDown()执行计数值减一。最后执行的任务在调用方法的开始调用await()方法,这样整个任务会阻塞,直到这个计数值为零,才会继续执行。

这种方式的缺点就是需要提前知道任务的数量。

4、submit向线程池提交任务,使用Future判断任务执行状态

使用submit向线程池提交任务与execute提交不同,submit会有Future类型的返回值。通过future.isDone()方法可以知道任务是否执行完成。

为什么要使用Executor线程池框架呢?

  • 每次执行任务都通过new Thread()去创建线程,比较消耗性能,创建一个线程是比较耗时、耗资源的
  • 调用new Thread()创建的线程缺乏管理,可以无限制的创建,线程之间的相互竞争会导致过多占用系统资源而导致系统瘫痪
  • 直接使用new Thread()启动的线程不利于扩展,比如定时执行、定期执行、定时定期执行、线程中断等都不好实现

execute和submit的区别

execute只能提交Runnable类型的任务,无返回值。submit既可以提交Runnable类型的任务,也可以提交Callable类型的任务,会有一个类型为Future的返回值,但当任务类型为Runnable时,返回值为null。

execute在执行任务时,如果遇到异常会直接抛出,而submit不会直接抛出,只有在使用Future的get方法获取返回值时,才会抛出异常

execute所属顶层接口是Executor,submit所属顶层接口是ExecutorService,实现类ThreadPoolExecutor重写了execute方法,抽象类AbstractExecutorService重写了submit方法。

进程线程

进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间。

线程是比进程更小的执行单位,它是在一个进程中独立的控制流,一个进程可以启动多个线程,每条线程并行执行不同的任务。

线程的生命周期

初始(NEW):线程被构建,还没有调用 start()。

运行(RUNNABLE):包括操作系统的就绪和运行两种状态。

阻塞(BLOCKED):一般是被动的,在抢占资源中得不到资源,被动的挂起在内存,等待资源释放将其唤醒。线程被阻塞会释放CPU,不释放内存。

等待(WAITING):进入该状态的线程需要等待其他线程做出一些特定动作(通知或中断)。

超时等待(TIMED_WAITING):该状态不同于WAITING,它可以在指定的时间后自行返回。

终止(TERMINATED):表示该线程已经执行完毕。

img

图片来源:Java并发编程的艺术

讲讲线程中断?

线程中断即线程运行过程中被其他线程给打断了,它与 stop 最大的区别是:stop 是由系统强制终止线程,而线程中断则是给目标线程发送一个中断信号,如果目标线程没有接收线程中断的信号并结束线程,线程则不会终止,具体是否退出或者执行其他逻辑取决于目标线程。

线程中断三个重要的方法:

1、java.lang.Thread#interrupt

调用目标线程的interrupt()方法,给目标线程发一个中断信号,线程被打上中断标记。

2、java.lang.Thread#isInterrupted()

判断目标线程是否被中断,不会清除中断标记。

3、java.lang.Thread#interrupted

判断目标线程是否被中断,会清除中断标记。

private static void test2() {
    Thread thread = new Thread(() -> {
        while (true) {
            Thread.yield();

            // 响应中断
            if (Thread.currentThread().isInterrupted()) {
                System.out.println("Java技术栈线程被中断,程序退出。");
                return;
            }
        }
    });
    thread.start();
    thread.interrupt();
}

创建线程有哪几种方式?

  • 通过扩展Thread类来创建多线程
  • 通过实现Runnable接口来创建多线程
  • 实现Callable接口,通过FutureTask接口创建线程。
  • 使用Executor框架来创建线程池。

继承 Thread 创建线程代码如下。run()方法是由jvm创建完操作系统级线程后回调的方法,不可以手动调用,手动调用相当于调用普通方法。


public class MyThread extends Thread {
    public MyThread() {
    }

    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println(Thread.currentThread() + ":" + i);
        }
    }

    public static void main(String[] args) {
        MyThread mThread1 = new MyThread();
        MyThread mThread2 = new MyThread();
        MyThread myThread3 = new MyThread();
        mThread1.start();
        mThread2.start();
        myThread3.start();
    }
}

Runnable 创建线程代码


public class RunnableTest {
    public static  void main(String[] args){
        Runnable1 r = new Runnable1();
        Thread thread = new Thread(r);
        thread.start();
        System.out.println("主线程:["+Thread.currentThread().getName()+"]");
    }
}

class Runnable1 implements Runnable{
    @Override
    public void run() {
        System.out.println("当前线程:"+Thread.currentThread().getName());
    }
}

实现Runnable接口比继承Thread类所具有的优势:

  1. 可以避免java中的单继承的限制
  2. 线程池只能放入实现Runable或Callable类线程,不能直接放入继承Thread的类

Callable 创建线程代码


public class CallableTest {
    public static void main(String[] args) {
        Callable1 c = new Callable1();

        //异步计算的结果
        FutureTask<Integer> result = new FutureTask<>(c);

        new Thread(result).start();

        try {
            //等待任务完成,返回结果
            int sum = result.get();
            System.out.println(sum);
        } catch (InterruptedException | ExecutionException e) {
            e.printStackTrace();
        }
    }

}

class Callable1 implements Callable<Integer> {

    @Override
    public Integer call() throws Exception {
        int sum = 0;

        for (int i = 0; i <= 100; i++) {
            sum += i;
        }
        return sum;
    }
}

使用 Executor 创建线程代码

/**
 * @author: 程序员大彬
 * @time: 2021-09-11 10:44
 */
public class ExecutorsTest {
    public static void main(String[] args) {
        //获取ExecutorService实例,生产禁用,需要手动创建线程池
        ExecutorService executorService = Executors.newCachedThreadPool();
        //提交任务
        executorService.submit(new RunnableDemo());
    }
}

class RunnableDemo implements Runnable {
    @Override
    public void run() {
        System.out.println("大彬");
    }
}

什么是线程死锁?

线程死锁是指两个或两个以上的线程在执行过程中,因争夺资源而造成的一种互相等待的现象。若无外力作用,它们都将无法推进下去。

如下图所示,线程 A 持有资源 2,线程 B 持有资源 1,他们同时都想申请对方持有的资源,所以这两个线程就会互相等待而进入死锁状态。

死锁

下面通过例子说明线程死锁,代码来自并发编程之美。

public class DeadLockDemo {
    private static Object resource1 = new Object();//资源 1
    private static Object resource2 = new Object();//资源 2

    public static void main(String[] args) {
        new Thread(() -> {
            synchronized (resource1) {
                System.out.println(Thread.currentThread() + "get resource1");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread() + "waiting get resource2");
                synchronized (resource2) {
                    System.out.println(Thread.currentThread() + "get resource2");
                }
            }
        }, "线程 1").start();

        new Thread(() -> {
            synchronized (resource2) {
                System.out.println(Thread.currentThread() + "get resource2");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread() + "waiting get resource1");
                synchronized (resource1) {
                    System.out.println(Thread.currentThread() + "get resource1");
                }
            }
        }, "线程 2").start();
    }
}

代码输出如下:

Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1

线程 A 通过 synchronized (resource1) 获得 resource1 的监视器锁,然后通过 Thread.sleep(1000)。让线程 A 休眠 1s 为的是让线程 B 得到执行然后获取到 resource2 的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁。

线程死锁怎么产生?怎么避免?

死锁产生的四个必要条件

  • 互斥:一个资源每次只能被一个进程使用
  • 请求与保持:一个进程因请求资源而阻塞时,不释放获得的资源
  • 不剥夺:进程已获得的资源,在未使用之前,不能强行剥夺
  • 循环等待:进程之间循环等待着资源

避免死锁的方法

  • 互斥条件不能破坏,因为加锁就是为了保证互斥
  • 一次性申请所有的资源,避免线程占有资源而且在等待其他资源
  • 占有部分资源的线程进一步申请其他资源时,如果申请不到,主动释放它占有的资源
  • 按序申请资源

线程run和start的区别?

  • 当程序调用start()方法,将会创建一个新线程去执行run()方法中的代码。run()就像一个普通方法一样,直接调用run()的话,不会创建新线程。
  • 一个线程的 start() 方法只能调用一次,多次调用会抛出 java.lang.IllegalThreadStateException 异常。run() 方法则没有限制。

线程都有哪些方法?

start

用于启动线程。

getPriority

获取线程优先级,默认是5,线程默认优先级为5,如果不手动指定,那么线程优先级具有继承性,比如线程A启动线程B,那么线程B的优先级和线程A的优先级相同

setPriority

设置线程优先级。CPU会尽量将执行资源让给优先级比较高的线程。

interrupt

告诉线程,你应该中断了,具体到底中断还是继续运行,由被通知的线程自己处理。

当对一个线程调用 interrupt() 时,有两种情况:

  1. 如果线程处于被阻塞状态(例如处于sleep, wait, join 等状态),那么线程将立即退出被阻塞状态,并抛出一个InterruptedException异常。
  2. 如果线程处于正常活动状态,那么会将该线程的中断标志设置为 true。不过,被设置中断标志的线程可以继续正常运行,不受影响。

interrupt() 并不能真正的中断线程,需要被调用的线程自己进行配合才行。

join

等待其他线程终止。在当前线程中调用另一个线程的join()方法,则当前线程转入阻塞状态,直到另一个进程运行结束,当前线程再由阻塞转为就绪状态。

yield

暂停当前正在执行的线程对象,把执行机会让给相同或者更高优先级的线程。

sleep

使线程转到阻塞状态。millis参数设定睡眠的时间,以毫秒为单位。当睡眠结束后,线程自动转为Runnable状态。

如何停止一个正在运行的线程?

  1. 使用共享变量的方式。共享变量可以被多个执行相同任务的线程用来作为是否停止的信号,通知停止线程的执行。
  2. 使用interrupt方法终止线程。当一个线程被阻塞,处于不可运行状态时,即使主程序中将该线程的共享变量设置为true,但该线程此时根本无法检查循环标志,当然也就无法立即中断。这时候可以使用Thread提供的interrupt()方法,因为该方法虽然不会中断一个正在运行的线程,但是它可以使一个被阻塞的线程抛出一个中断异常,从而使线程提前结束阻塞状态。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1440611.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】引用与内联

个人主页 &#xff1a; zxctsclrjjjcph 文章封面来自&#xff1a;艺术家–贤海林 如有转载请先通知 文章目录 1. 前言2. 引用2.1 引用概念2.2 引用使用场景2.3 引用特性2.4 引用和指针的区别2.5 传值、传引用效率比较2.5.1 值和引用的作为返回值类型的性能比较 3. 内联函数3.1 …

React + SpringBoot + Minio实现文件的预览

思路&#xff1a;后端提供接口&#xff0c;从minio获取文件的预览链接&#xff0c;返回给前端&#xff0c;前端使用组件进行渲染展示 这里我从minio获取文件预览地址用到了一个最近刚开源的项目&#xff0c;挺好用的&#xff0c;大伙可以试试&#xff0c;用法也很简单 官网&am…

【Unity】QFramework通用背包系统优化:TipPanel优化

前言 在学习凉鞋老师的课程《QFramework系统设计&#xff1a;通用背包系统》第五章时&#xff0c;笔者对物品提示TipPanel界面进行了一些优化。 优化内容包括&#xff1a; 解决闪烁问题跟随鼠标移动自适应界面大小生成位置优化 效果还是蛮丝滑的&#xff1a; 解决闪烁问题 …

Unknown system variable ‘tx_read_only

使用datagrip可以创建成功 但是使用pycharm就会报一个错误“Unknown system variable tx_read_only”

springboot164党员教育和管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

作业2.8

1、选择题 1.1、以下选项中,不能作为合法常量的是 ____B______ A&#xff09;1.234e04 B&#xff09;1.234e0.4 C&#xff09;1.234e4 D&#xff09;1.234e0 1.2、以下定义变量并初始化错误的是_____D________。 A) char c1 ‘H’ &#xff1b; B) char c…

第3章 模板

学习目标 了解模板与模板引擎Jinja2&#xff0c;能够复述模板引擎和模板的作用 掌握模板变量的语法&#xff0c;能够在Jinja2模板中定义模板变量 掌握过滤器的使用&#xff0c;能够在Jinja2模板中使用过滤器过滤模板变量保存的数据 掌握选择结构的使用&#xff0c;能够在Jin…

Redis篇之过期淘汰策略

一、数据的过期策略 1.什么是过期策略 Redis对数据设置数据的有效时间&#xff0c;数据过期以后&#xff0c;就需要将数据从内存中删除掉。可以按照不同的规则进行删除&#xff0c;这种删除规则就被称之为数据的删除策略&#xff08;数据过期策略&#xff09;。 2.过期策略-惰…

1.3 Verilog 环境搭建详解教程

学习 Verilog 做仿真时&#xff0c;可选择不同仿真环境。FPGA 开发环境有 Xilinx 公司的 ISE&#xff08;目前已停止更新&#xff09;&#xff0c;VIVADO&#xff1b;因特尔公司的 Quartus II&#xff1b;ASIC 开发环境有 Synopsys 公司的 VCS &#xff1b;很多人也在用 Icarus…

python-自动化篇-办公-一键将word中的表格提取到excel文件中

文章目录 代码 工作中&#xff0c;经常需要将Word文档中的表格粘贴到Excel文件中&#xff0c;以便汇总及分析。一个一个复制粘贴&#xff0c;非常不方便&#xff0c;还是Python自动化操作&#xff0c;省心省力。要求如下图所示&#xff0c;即将word中的所有表格&#xff0c;转存…

Transformer实战-系列教程13:DETR 算法解读

&#x1f6a9;&#x1f6a9;&#x1f6a9;Transformer实战-系列教程总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 点我下载源码 1、物体检测 说到目标检测你能想到什么 faster-rcnn系列&#xff0c;开山之作&…

【开源】SpringBoot框架开发大病保险管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统配置维护2.2 系统参保管理2.3 大病保险管理2.4 大病登记管理2.5 保险审核管理 三、系统详细设计3.1 系统整体配置功能设计3.2 大病人员模块设计3.3 大病保险模块设计3.4 大病登记模块设计3.5 保险审核模块设计 四、…

vscode无法ssh远程连接到服务器:远程主机可能不符合 glibc 和 libstdc++ VS Code 服务器的先决条件

vscode无法ssh远程连接到服务器&#xff1a;远程主机可能不符合 glibc 和 libstdc VS Code 服务器的先决条件 今天vscode自动更新后无法连接到远程服务器了&#xff0c;提示"远程主机可能不符合 glibc 和 libstdc VS Code 服务器的先决条件" 并且命令窗口一直显示&qu…

DFS——迭代加深、双向DFS、IDA*

迭代加深 迭代加深主要用于dfs搜索过程中&#xff0c;某条支路特别深&#xff0c;但是答案在特别浅的地方&#xff0c;也即在另一个分支中&#xff0c;但是按照dfs的原理&#xff0c;我们是将这条支路搜完才去搜另一条支路。所以我们就要及时剪枝&#xff0c;而迭代加深算法则…

ZigBee学习——在官方例程上实现串口通信

Z-Stack版本为3.0.2 IAR版本为10.10.1 文章目录 一、添加头文件二、定义接收缓冲区三、编写Uart初始化函数四、编写串口回调函数五、函数声明六、函数调用七、可能遇到的问题(function “halUartInit“ has no prototype) 以下所有操作都是在APP层进行&#xff0c;也就是这个文…

XGB-6: 单调性约束Monotonic Constraints

在建模问题或项目中&#xff0c;通常情况下&#xff0c;可接受模型的函数形式会以某种方式受到约束。这可能是由于业务考虑&#xff0c;或者由于正在研究的科学问题的类型。在某些情况下&#xff0c;如果对真实关系有非常强烈的先验信念&#xff0c;可以使用约束来提高模型的预…

机器学习 | 深入集成学习的精髓及实战技巧挑战

目录 xgboost算法简介 泰坦尼克号乘客生存预测(实操) lightGBM算法简介 《绝地求生》玩家排名预测(实操) xgboost算法简介 XGBoost全名叫极端梯度提升树&#xff0c;XGBoost是集成学习方法的王牌&#xff0c;在Kaggle数据挖掘比赛中&#xff0c;大部分获胜者用了XGBoost。…

【平衡小车入门】(PID、FreeRTOS、hal库)

本篇博客记录自己复刻的平衡小车 前言一、硬件需求二、最终效果三、整体流程第一步&#xff1a;stm32通过DRV8833电机驱动模块使用PWM驱动直流减速电机第二步&#xff1a;理解PID算法在平衡小车中的应用第三步&#xff1a;PID调参 四、源代码获取 前言 从代码上看&#xff0c;…

安装Pytorch中的torchtext之CUDA版的正确方式

安装Pytorch和torchtext&#xff1a; Previous PyTorch Versions | PyTorch Installing previous versions of PyTorchhttps://pytorch.org/get-started/previous-versions/ 上面的命令如下&#xff1a; pip install torch2.1.2 torchvision0.16.2 torchaudio2.1.2 --index-…

【RPA】智能自动化的未来:AI + RPA

伴随着人工智能&#xff08;AI&#xff09;技术的迅猛进步&#xff0c;机器人流程自动化&#xff08;RPA&#xff09;正在经历一场翻天覆地的变革。AI为RPA注入了新的活力&#xff0c;尤其在处理复杂任务和制定决策方面。通过融合自然语言处理&#xff08;NLP&#xff09;、机器…