hummingbird,一个非常好用的 Python 库!

news2024/11/18 9:41:14

前言

随着人工智能和机器学习的快速发展,将训练好的模型部署到生产环境中成为了一个重要的任务。而边缘计算设备,如智能手机、嵌入式系统和物联网设备,也需要能够运行机器学习模型以进行实时推理。Python Hummingbird 是一个强大的工具,可以轻松地将机器学习模型部署到边缘设备。本文将详细介绍 Python Hummingbird 的使用方法,并提供丰富的示例代码。

目录

​编辑

前言

什么是 Python Hummingbird?

安装 Python Hummingbird

将 Scikit-Learn 模型转换为 Python Hummingbird 格式

在边缘设备上运行 Python Hummingbird 模型

支持的机器学习框架和模型类型

实际应用场景

 1. 物联网设备

 2. 移动应用

 3. 嵌入式系统

总结


什么是 Python Hummingbird?

Python Hummingbird 是一个用于将机器学习模型部署到边缘设备的工具。它的目标是简化模型的转换和部署过程,使开发人员能够轻松地在边缘设备上运行训练好的模型。Python Hummingbird 支持多种机器学习框架,包括 Scikit-Learn、XGBoost、LightGBM、ONNX 和 PyTorch,因此可以使用最喜欢的框架来训练模型,并将其部署到边缘设备上。

安装 Python Hummingbird

要开始使用 Python Hummingbird,首先需要安装它。

可以使用 pip 包管理器来安装 Python Hummingbird:

pip install hummingbird-ml

安装完成后,就可以开始将机器学习模型部署到边缘设备了。

将 Scikit-Learn 模型转换为 Python Hummingbird 格式

首先看一个示例,将 Scikit-Learn 模型转换为 Python Hummingbird 格式,并将其部署到边缘设备上。假设有一个 Scikit-Learn 的决策树分类器,想将其部署到边缘设备以进行实时分类。

首先,创建一个示例的 Scikit-Learn 决策树分类器:

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载示例数据集
data = load_iris()
X, y = data.data, data.target

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建并训练决策树分类器
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = clf.predict(X_test)

# 计算分类准确度
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

现在,已经有了一个训练好的 Scikit-Learn 决策树分类器。接下来,使用 Python Hummingbird 将其转换为可在边缘设备上运行的格式:

from hummingbird.ml import convert

# 将 Scikit-Learn 模型转换为 Python Hummingbird 格式
model = convert(clf, 'torch')

# 可以将 model 保存到文件以供后续部署使用
model.save('decision_tree.hbm')

在上述代码中,使用了 hummingbird.ml.convert 函数将 Scikit-Learn 模型转换为 Python Hummingbird 格式。然后,可以将转换后的模型保存到文件中,以便将其部署到边缘设备上。

在边缘设备上运行 Python Hummingbird 模型

现在,看看如何在边缘设备上运行 Python Hummingbird 模型。首先,需要在目标设备上安装 Python Hummingbird,然后可以加载之前保存的 Python Hummingbird 模型并在设备上运行推理。

以下是一个示例代码,演示如何在边缘设备上加载 Python Hummingbird 模型并使用它进行实时推理:

from hummingbird.ml import load

# 在边缘设备上加载 Python Hummingbird 模型
model = load('decision_tree.hbm')

# 准备输入数据
input_data = [5.1, 3.5, 1.4, 0.2]  # 以 Iris 数据集的特征为例

# 使用模型进行推理
output_data = model.predict(input_data)

print(f'Predicted class: {output_data}')

在这个示例中,首先加载了之前保存的 Python Hummingbird 模型,然后准备了输入数据,并使用模型进行了推理。这能够在边缘设备上运行训练好的机器学习模型,而无需依赖云端服务或高性能服务器。

支持的机器学习框架和模型类型

Python Hummingbird 支持多种机器学习框架和模型类型,包括但不限于:

  • Scikit-Learn 模型(包括分类、回归、聚类等)

  • XGBoost 和 LightGBM 模型

  • ONNX 模型

  • PyTorch 模型

这使得 Python Hummingbird 成为一个强大的工具,可以用于各种不同的机器学习任务和模型类型。

实际应用场景

Python Hummingbird 可以在许多实际应用场景中发挥作用,其中包括但不限于:

 1. 物联网设备

在物联网设备上运行机器学习模型,用于实时数据分析和决策制定。例如,在智能家居设备中使用图像识别模型来检测人脸或动作。

# 在物联网设备上加载 Python Hummingbird 模型
model = load('image_recognition_model.hbm')

# 捕获图像并使用模型进行识别
image_data = capture_image()
result = model.predict(image_data)

 2. 移动应用

在移动应用程序中使用机器学习模型,以提供个性化的推荐、图像识别和自然语言处理等功能。例如,在移动社交媒体应用中使用情感分析模型来分析用户的帖子和评论。

# 在移动应用中加载 Python Hummingbird 模型
model = load('sentiment_analysis_model.hbm')

# 分析用户发表的评论
user_comment = get_user_comment()
sentiment = model.predict(user_comment)

 3. 嵌入式系统

在嵌入式系统中运行机器学习模型,以控制和优化设备的行为。例如,在自动驾驶汽车中使用计算机视觉模型来检测障碍物和标志。

# 在嵌入式系统中加载 Python Hummingbird 模型
model = load('object_detection_model.hbm')

# 使用模型进行障碍物检测
image_data = capture_image()
obstacles = model.predict(image_data)

总结

Python Hummingbird 是一个强大的工具,可以将机器学习模型轻松部署到边缘设备中,实现实时推理和决策。本文介绍了 Python Hummingbird 的安装和使用方法,并提供了示例代码,以演示如何将 Scikit-Learn 模型转换为 Python Hummingbird 格式并在边缘设备上运行模型。同时,还探讨了 Python Hummingbird 在物联网设备、移动应用和嵌入式系统等实际应用场景中的潜在用途。希望本文能够帮助大家更好地理解和使用 Python Hummingbird,以满足各种机器学习部署需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1438041.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PKI - 03 密钥管理(如何进行安全的公钥交换)

文章目录 Pre密钥管理面临的挑战安全密钥管理的几种方式手动密钥交换与确认受信任的介绍 Pre PKI - 02 对称与非对称密钥算法 密钥管理面临的挑战 密钥管理面临的挑战主要包括以下几点: 安全的公钥交换:在使用基于非对称密钥算法的服务之前&#xff0c…

最新话费充值系统源码,附带系统安装教程

搭建教程 亲测环境:PHP7.0MySQL5.6 PHP扩展安装:sg11 数据库配置文件路径:/config/database.php 伪静态设置为thinkphp 后台地址:/admin 账号密码:admin/123456

Redis渗透SSRF的利用

Redis是什么? Redis是NoSQL数据库之一,它使用ANSI C编写的开源、包含多种数据结构、支持网络、基于内存、可选持久性的键值对存储数据库。默认端口是:6379 工具安装 下载地址: http://download.redis.io/redis-stable.tar.gz然…

【XR806开发板试用】 GPIO驱动LED

按照教程来学习下GPIO驱动LED指示灯 一、硬件电路 使用板卡上D1指示灯测试 二、驱动程序部分 在ohosdemo目录下创建文件 编辑ohosdemo/BUILD.gn文件 编辑ohosdemo/led/BUILD.gn文件 编辑ohosdemo/led/src/main.c文件 三、编译程序 将编译好的程序下载到开发板 四…

完全让ChatGPT写一个风格迁移的例子,不改动任何代码

⭐️ 前言 小编让ChatGPT写一个风格迁移的例子,注意注意,代码无任何改动,直接运行,输出结果。 额。。。。这不是风格转换后的结果图。 ⭐️ 风格迁移基本原理 风格迁移是一种计算机视觉领域的图像处理技术,它的目标…

BUUCTF-Real-[Tomcat]CVE-2017-12615

目录 漏洞描述 一、漏洞编号:CVE-2017-12615 二、漏洞复现 get flag 漏洞描述 CVE-2017-12615:远程代码执行漏洞 影响范围:Apache Tomcat 7.0.0 - 7.0.79 (windows环境) 当 Tomcat 运行在 Windows 操作系统时,且启用了 HTTP P…

Stable Diffusion 模型下载:Schematics(原理图)

文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十 下载地址 模型介绍 “Schematics”是一个非常个性化的LORA,我的目标是创建一个整体风格,但主要面向某些风格美学,因此它可以用于人物、物体、风景等…

微信小程序合集更更更之实现仿网易云播放动效

实现效果 写在最后🍒 源码,关注🍥苏苏的bug,🍡苏苏的github,🍪苏苏的码云~

【Leetcode】2641. 二叉树的堂兄弟节点 II

文章目录 题目思路代码结果 题目 题目链接 给你一棵二叉树的根 root ,请你将每个节点的值替换成该节点的所有 堂兄弟节点值的和 。 如果两个节点在树中有相同的深度且它们的父节点不同,那么它们互为 堂兄弟 。 请你返回修改值之后,树的根 …

TitanIDE:v2.8.0正式发布,模板市场来袭!

TitanIDE v2.8.0版本正式发布,模板市场中内置40模版! 什么是TitanIDE TitanIDE,云端IDE,作为数字化时代研发体系不可或缺的一环,和企业建设好的云服务具有很高的互操作性。秉承“安全、高效、体验”的原则&#xff0…

open3d进行ICP点云配准

一、代码 import numpy as np import open3d as o3d from scipy.spatial.transform import Rotation as R# 1. 加载源点云和目标点云 source o3d.io.read_point_cloud("bun_zipper.ply") target o3d.io.read_point_cloud("bun_zipper2.ply") source.pai…

金融信贷风控特征计算详解

特征的含义? 特征可以说是风控系统中的最小单元,是风控工具的重要组成部分,我们也可以理解成变量。不过叫什么问题不大,团队内有相同的共识就行。 风控特征是我们做数字化线上风控中的重要组成部分,几乎可以说没有风…

[C++]类和对象(下)

一:再谈构造函数 1.1 构造函数体赋值 在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值,虽然构造函数调用之后,对象中已经有了一个初始值,但是不能将其称为对对象中成员变量的初始化 构造函数体中的语…

Rust开发WASM,浏览器运行WASM

首先需要安装wasm-pack cargo install wasm-pack 使用cargo创建工程 cargo new --lib mywasm 编辑Cargo.toml文件,修改lib的类型为cdylib,并且添加依赖wasm-bindgen [package] name "mywasm" version "0.1.0" edition "…

精酿啤酒:使用全麦芽酿造的优点与挑战

全麦芽酿造是指使用全部麦芽而非仅使用部分麦芽进行啤酒酿造的过程。近年来,全麦芽酿造在啤酒行业中逐渐受到关注。对于Fendi Club啤酒来说,使用全麦芽酿造也带来了一些优点和挑战。 使用全麦芽酿造的优点首先体现在啤酒的口感和风味上。全麦芽含有更多的…

正点原子--STM32通用定时器学习笔记(2)

1. 通用定时器输入捕获部分框图介绍 捕获/比较通道的输入部分(通道1) 输入通道映射CC1S[1:0]→采样频率CKD[1:0]→滤波方式IC1F[3:0]→边沿检测方式CC1P→捕获分频ICPS[1:0]→使能捕获CC1E 输入部分对相应的TIx输入信号采样,并产生一个滤波后…

论文阅读-Transformer-based language models for software vulnerability detection

「分享了一批文献给你,请您通过浏览器打开 https://www.ivysci.com/web/share/biblios/D2xqz52xQJ4RKceFXAFaDU/ 您还可以一键导入到 ivySCI 文献管理软件阅读,并在论文中引用 」 本文主旨:本文提出了一个系统的框架来利用基于Transformer的语…

【教学类-47-01】UIBOT+IDM下载儿童古诗+修改文件名

背景需求: 去年12月,我去了其他幼儿园参观,这是一个传统文化德育教育特色的学校,在“古典集市”展示活动中,小班中班大班孩子共同现场念诵《元日》《静夜思》包含了演唱版本和儿歌念诵版本。 我马上也要当班主任了&a…

【OpenVINO™】在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (下篇)

在 MacOS 上使用 OpenVINO™ C# API 部署 Yolov5 (下篇) 项目介绍 YOLOv5 是革命性的 "单阶段"对象检测模型的第五次迭代,旨在实时提供高速、高精度的结果,是世界上最受欢迎的视觉人工智能模型,代表了Ult…

单片机学习笔记---串口通信(1)

目录 通信的基本概念 通信的方式 1.按照数据传送的方式,可分为串行通信和并行通信。 1.1串行通信 1.2并行通信 2.按照通信的数据同步方式,又可以分为异步通信和同步通信。 2.1 异步通信 2.2同步通信 3.按照数据的传输方向,又可以分为…