java---查找算法(二分查找,插值查找,斐波那契[黄金分割查找] )-----详解 (ᕑᗢᓫ∗)˒

news2025/1/11 7:53:01

目录

 一.  二分查找(递归):

代码详解:

运行结果:

二分查找优化:

优化代码: 

运行结果(返回对应查找数字的下标集合):

 ​编辑

 二分查找(非递归):

二. 插值查找

 代码详解:

运行结果:

 三. 斐波那契[黄金分割查找]

代码详解:

 运行结果:


 一.  二分查找(递归):

前提条件: 所要查找的数组必须为有序,如果不是有序要事先排序好

二分查找思路:

1. 首先确定该数组的中间的下标 mid = (left + right) / 2

2. 然后让需要查找的数 findVal 和 arr[mid] 比较--->分情况进行讨论

2.1 findVal > arr[mid] ,  说明你要查找的数在mid 的右边, 因此需要递归的向右查找

2.2 findVal < arr[mid], 说明你要查找的数在mid 的左边, 因此需要递归的向左查找

2.3  findVal == arr[mid] 说明找到,就返回

//什么时候我们需要结束递归.

1) 找到就结束递归

2) 递归完整个数组,仍然没有找到findVal ,也需要结束递归  当 left > right 就需要退出

代码详解:

public class BinarySearch {

    // 二分查找算法
    /**
     *
     * @param arr
     *            数组
     * @param left
     *            左边的索引
     * @param right
     *            右边的索引
     * @param findVal
     *            要查找的值
     * @return 如果找到就返回下标,如果没有找到,就返回 -1
     */
    public static int binarySearch(int[] arr, int left, int right, int findVal) {


        // 当 left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return -1;
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) { // 向 右递归
            return binarySearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { // 向左递归
            return binarySearch(arr, left, mid - 1, findVal);
        } else {

            return mid;
        }

    }
//测试
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);

        int[] arr = new int[]{5,13,17,24,35};
        System.out.print("请输入要查找的数字:");
        int n = sc.nextInt();
        int index = binarySearch(arr,0,arr.length-1,n);//一定要为有序数组
        if(index >= 0){
            System.out.println("找到了,他的下标是:"+index);
        }else{
            System.out.println("找不到!");
        }
    }
}

运行结果

输入所要查找的数字,就能返回对应的数组下标

 

二分查找优化:

 如果数组中出现多个相同的数字,那我们如何得到所有要查找数字的下标呢?很显然,上述代码不足以解决这个问题

例如数组:{1,8, 10, 89, 1000, 1000,1234}   这时,我们需要借助集合ArrayList来解决(相对简便)

思路: 

 * 1. 在找到mid 索引值,不要马上返回

* 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
* 4. 将Arraylist返回

优化代码: 

public class BinarySearch {

    // 二分查找算法
    /**
     *
     * @param arr
     *            数组
     * @param left
     *            左边的索引
     * @param right
     *            右边的索引
     * @param findVal
     *            要查找的值
     * @return 如果找到就返回下标,如果没有找到,就返回 -1
     */
    public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {


        // 当 left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return new ArrayList<Integer>();
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) { // 向 右递归
            return binarySearch2(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) { // 向左递归
            return binarySearch2(arr, left, mid - 1, findVal);
        } else {

            List<Integer> resIndexlist = new ArrayList<Integer>();
            //向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
            int temp = mid - 1;
            while(true) {
                if (temp < 0 || arr[temp] != findVal) {//退出
                    break;
                }
                //否则,就temp 放入到 resIndexlist
                resIndexlist.add(temp);
                temp -= 1; //temp左移
            }
            resIndexlist.add(mid);  //

            //向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
            temp = mid + 1;
            while(true) {
                if (temp > arr.length - 1 || arr[temp] != findVal) {//退出
                    break;
                }
                //否则,就temp 放入到 resIndexlist
                resIndexlist.add(temp);
                temp += 1; //temp右移
            }

            return resIndexlist;
        }

        }

    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);

        int[] arr = new int[]{1,8, 10, 89, 1000, 1000,1000,1234};
        System.out.print("请输入要查找的数字:");
        int n = sc.nextInt();
        //一定要为有序数组
        List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, n);
        System.out.println("resIndexList=" + resIndexList);
    }
}

运行结果(返回对应查找数字的下标集合):

 

 二分查找(非递归):

与上面类似,不再过多说明,直接上代码:

import java.util.*;

public class BinarySearch {

    public static int binarySearch(int[] arr,int findVal){
        int left = 0;
        int right = arr.length-1;
        while(left <= right){
            int mid = (left + right) / 2;
            if(arr[mid] == findVal){
                return mid;
            }else if(arr[mid] > findVal){
                right = mid - 1;
            }else{
                left = mid + 1;
            }
        }
        return -1;//如果上述条件都没满足,说明没有找到
    }

    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int[] arr = new int[]{4,8,13,78,90};
        System.out.print("请输入要查找的数字:");
        int n = sc.nextInt();
         int ret = binarySearch(arr,n);
         if(ret >= 0){
             System.out.println("找到了,它的下标是:"+ret);
         }else{
             System.out.println("没有找到!");
         }
    }
}

 运行结果:

二. 插值查找

 举个栗子:

数组  arr = [1, 2, 3, ......., 100] 假如我们需要查找的值  1 使用二分查找的话,我们需要多次递归,才能找到 1

使用插值查找算法 int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left])   -----》相当于公式

int mid = 0 + (99 - 0) * (1 - 1)/ (100 - 1) = 0 + 99 * 0 / 99 = 0

比如我们查找的值 100

int mid = 0 + (99 - 0) * (100 - 1) / (100 - 1) = 0 + 99 * 99 / 99 = 0 + 99 = 99

相对二分查找,插值查找效率更高,但是与二分查找一样需要数组有序

 代码详解:

import java.util.*;
public class InsertValueSearch {

        //说明:插值查找算法,也要求数组是有序的
        /**
         *
         * @param arr 数组
         * @param left 左边索引
         * @param right 右边索引
         * @param findVal 查找值
         * @return 如果找到,就返回对应的下标,如果没有找到,返回-1
         */
        public static int insertValueSearch(int[] arr, int left, int right, int findVal) {
            int count = 0;
            System.out.println("插值查找次数:"+(++count));

            //注意:findVal < arr[0]  和  findVal > arr[arr.length - 1] 必须需要
            //否则我们得到的 mid 可能越界
            if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
                return -1;
            }

            // 求出mid, 自适应
            int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
            int midVal = arr[mid];
            if (findVal > midVal) { // 说明应该向右边递归
                return insertValueSearch(arr, mid + 1, right, findVal);
            } else if (findVal < midVal) { // 说明向左递归查找
                return insertValueSearch(arr, left, mid - 1, findVal);
            } else {
                return mid;
            }
    }

    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);

        System.out.print("请输入要查找的数字:");
        int n = sc.nextInt();
        int[] arr = new int [100];
        for(int i = 0;i < 100;i++){
            arr[i] = i + 1;
        }
        int ret = insertValueSearch(arr,0,arr.length-1,n);
        if(ret >= 0){
            System.out.println("找到了,它的下标是:"+ret);
        }else{
            System.out.println("没找到!");
        }

    }

}

运行结果:

 三. 斐波那契[黄金分割查找]

代码详解:

import java.util.*;
public class FibonacciSearch {

    public static int maxSize = 20;
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        System.out.print("请输入要查找的数字:");
        int n = sc.nextInt();
        int [] arr = {1,8, 10, 89, 1000, 1234};

        System.out.println("index=" + fibSearch(arr, n));// 0

    }

    //因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
    //非递归方法得到一个斐波那契数列
    public static int[] fib() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }
    //使用非递归的方式编写算法
    /**
     *
     * @param a  数组
     * @param key 我们需要查找的关键码(值)
     * @return 返回对应的下标,如果没有-1
     */
    public static int fibSearch(int[] a, int key) {
        int low = 0;
        int high = a.length - 1;
        int k = 0; //表示斐波那契分割数值的下标
        int mid = 0; //存放mid值
        int f[] = fib(); //获取到斐波那契数列
        //获取到斐波那契分割数值的下标
        while(high > f[k] - 1) {
            k++;
        }
        //因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
        //不足的部分会使用0填充
        int[] temp = Arrays.copyOf(a, f[k]);
        //实际上需求使用a数组最后的数填充 temp
        //举例:
        //temp = {1,8, 10, 89, 1000, 1234, 0, 0}  => {1,8, 10, 89, 1000, 1234, 1234, 1234,}
        for(int i = high + 1; i < temp.length; i++) {
            temp[i] = a[high];
        }

        // 使用while来循环处理,找到我们的数 key
        while (low <= high) { // 只要这个条件满足,就可以找
            mid = low + f[k - 1] - 1;
            if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边)
                high = mid - 1;
                //1. 全部元素 = 前面的元素 + 后边元素
                //2. f[k] = f[k-1] + f[k-2]
                //因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
                //即 在 f[k-1] 的前面继续查找 k--
                //即下次循环 mid = f[k-1-1]-1
                k--;
            } else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
                low = mid + 1;
                //1. 全部元素 = 前面的元素 + 后边元素
                //2. f[k] = f[k-1] + f[k-2]
                //3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
                //4. 即在f[k-2] 的前面进行查找 k -=2
                //5. 即下次循环 mid = f[k - 1 - 2] - 1
                k -= 2;
            } else { //找到
                //需要确定,返回的是哪个下标
                if(mid <= high) {
                    return mid;
                } else {
                    return high;
                }
            }
        }
        return -1;
    }
}

 运行结果:

博客到这里也是结束了,制作不易,喜欢的小伙伴可以点赞加关注支持下博主,这对我真的很重要~~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1437211.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YUM | 包安装 | 管理

YUM 功能 软件包安装&#xff1a; 通过yum命令安装软件包。例如&#xff0c;安装一个名为 example-package 的软件包 yum install example-package更新包 检查更新&#xff1a; 检查可用更新&#xff1a; sudo yum check-update <package_name>软件包更新&#xff1a; y…

k8s报错记录(持续更新中....)

k8s报错记录(持续更新中…) 1. 部署k8s遇到kube-flannel已经构建&#xff0c;但是coredns一直处于ContainerCreating和pending状态 解决问题&#xff1a; 通过 kubectl describe pod -n kube-system coredns-7ff77c879f-9ls2b 查看pod的详细信息&#xff0c;报错说是cni 配置没…

Linux系统调试课:硬件断点

沉淀、分享、成长,让自己和他人都能有所收获!😄 📢在linux内核编程中,经常会遇到由于内存被篡改,例如 buffer overflow,野指针,write after free等。查找分析此类问题非常的麻烦。 一、什么是硬件断点 硬件断点,是Linux内核中是一种被ptrace和内核内调试器使用调试…

蓝桥杯嵌入式学习记录——点亮第一个LED(含软件的使用)

目录 一、蓝桥杯概述 二、软件的使用 三、点亮LED 一、蓝桥杯概述 蓝桥杯是一个编程大赛、商赛&#xff0c;获奖率高达60%&#xff08;省赛中一等奖10%、二等奖20%、三等奖30%&#xff09;&#xff0c;但这并不影响它的含金量&#xff0c;多所高校将它列为A类赛事并实行保研…

React+Echarts实现数据排名+自动滚动+Y轴自定义toolTip文字提示

1、效果 2、环境准备 1、react18 2、antd 4 3、代码实现 原理&#xff1a;自动滚动通过创建定时器动态更新echar的dataZoom属性startValue、endValue&#xff0c;自定义tooltip通过监听echar的鼠标移入移出事件&#xff0c;判断tooltTip元素的显隐以及位置。 1、导入所需组…

阿里云游戏服务器租用价格表,2024最新报价

阿里云游戏服务器租用价格表&#xff1a;4核16G服务器26元1个月、146元半年&#xff0c;游戏专业服务器8核32G配置90元一个月、271元3个月&#xff0c;阿里云服务器网aliyunfuwuqi.com分享阿里云游戏专用服务器详细配置和精准报价&#xff1a; 阿里云游戏服务器租用价格表 阿…

C语言之随心所欲打印三角形,金字塔,菱形(倒金字塔)

个人主页&#xff08;找往期文章包括但不限于本期文章中不懂的知识点&#xff09;&#xff1a; 我要学编程(ಥ_ಥ)-CSDN博客 目录 三角形 金字塔 倒金字塔 菱形 三角形 题目&#xff1a;根据输入的行数打印对应的三角形。&#xff08;用 * 号打印&#xff09; #includ…

亚信安慧AntDB构建繁荣生态的数据库管理系统

亚信安慧AntDB是一款数据库管理系统&#xff0c;它采用全球影响力大、社区繁荣、开放度高、生态增长迅速的PG内核。这款系统具有卓越的性能和稳定性&#xff0c;在全球范围内备受用户青睐。与此同时&#xff0c;AntDB的社区也是充满活力的&#xff0c;用户可以在社区中交流经验…

Java设计模式大全:23种常见的设计模式详解(三)

本系列文章简介&#xff1a; 设计模式是在软件开发过程中&#xff0c;经过实践和总结得到的一套解决特定问题的可复用的模板。它是一种在特定情境中经过验证的经验和技巧的集合&#xff0c;可以帮助开发人员设计出高效、可维护、可扩展和可复用的软件系统。设计模式提供了一种在…

Springboot项目报文加密(AES、RSA、Filter动态加密)

Springboot项目报文加密(AES、RSA、Filter动态加密) 一、痛点1.1、初版报文加密二、前期准备2.1、AES加密2.2、RSA加密2.3、国密算法概述2.4、国密SM22.5、国密SM32.6、国密SM42.7、JAVA中的拦截器、过滤器2.8、请求过滤器2.9、响应过滤器2.10、登录验证码2.11、BCrypt非对称…

【力扣 51】N 皇后(回溯+剪枝+深度优先搜索)

按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回所有不同的 n 皇后问题 的解决方案。 每一种…

C++ 11/14/17 智能指针

1. 简介 为了更加容易&#xff08;更加安全&#xff09;的使用动态内存&#xff0c;引入了智能指针的概念。智能指针的行为类似常规指针&#xff0c;重要的区别是它负责自动释放所指向的对象。 标准库提供的两种智能指针的区别在于管理底层指针的方法不同&#xff1a;shared_p…

【MATLAB】使用随机森林在回归预测任务中进行特征选择(深度学习的数据集处理)

1.随机森林在神经网络的应用 当使用随机森林进行特征选择时&#xff0c;算法能够为每个特征提供一个重要性得分&#xff0c;从而帮助识别对目标变量预测最具影响力的特征。这有助于简化模型并提高其泛化能力&#xff0c;减少过拟合的风险&#xff0c;并且可以加快模型训练和推理…

时间序列特有的交叉验证方法GroupTimeSeriesSplit

一、前言 对于时间序列的任务的交叉验证&#xff0c;很核心的问题在于数据是否leak&#xff0c;因为较其他数据最为不同的是时间信息&#xff0c;有先后的发生顺序。 如果用简单的打散数据顺序&#xff0c;之后抽取&#xff0c;进行交叉验证肯定是违反这个时间顺序的规则的&…

有趣的CSS - 多彩变化的按钮

目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页面渲染效果 整体效果 这个按钮效果主要使用 :hover 、:active 伪选择器以及 animation 、transition 属性来让背景色循环快速移动形成视觉效果。 核心代码部分&#xff0c;简要说明了写法思路&…

shell脚本基础语法(.sh ./ sh bash source shell)

Linux 之 Shell 脚本基础语法 0. 学习一门语言的顺序 1. Shell 编程概述 1.1 Shell 名词解释 在 Linux 操作系统中&#xff0c;Shell 是一个命令行解释器&#xff0c;它为用户提供了一个与操作系统内核交互的界面。用户可以通过 Shell 输入命令&#xff0c;然后 Shell 将这些…

Redis -- zset有序集合

聪明在于勤奋&#xff0c;天才在于积累。 目录 zset 有序集合 zset相关命令 zadd zcard zcount zrange zrevrange zrangebyscore zpopmax bzpopmax zpopmin bzpopmin zrank zscore zrem zRemRangeByRank zRemRangeByScore zincrby 集合间操作 zinte…

mac电脑快捷指令实现拼图

mac访达&#xff0c;搜索输入‘快捷指令’&#xff0c;找到‘快捷指令’&#xff0c; 点击快捷指令&#xff0c;进入快捷指令中心&#xff0c;搜索‘拼图’ &#xff0c;选中‘照片拼图’&#xff0c; 点击‘添加快捷指令’&#xff0c; 在‘所有快捷键指令’中可以看到添加的快…

Unity C#进阶案例 “泛型编程”

文章目录 泛型基础示例1&#xff1a;泛型类与方法示例2&#xff1a;泛型方法示例3&#xff1a;泛型约束示例4&#xff1a;泛型委托与事件示例5&#xff1a;泛型单例模式&#xff08;Unity&#xff09; 在Unity中&#xff0c;C#的泛型编程是一种强大的工具&#xff0c;它允许你编…

对网络流水印的调查

文章信息 论文题目&#xff1a;Network Flow Watermarking: A Survey 期刊&#xff08;会议&#xff09;&#xff1a; IEEE Communications Surveys & Tutorials 时间&#xff1a;2016 级别&#xff1a;中科院1区 文章链接&#xff1a;https://ieeexplore.ieee.org/stamp/…