简单不先于复杂,而是在复杂之后。
文章目录
- 1. 交换排序
- 1.1 冒泡排序
- 1.2 快速排序
- 1.3 快速排序优化
- 1.4 快速排序非递归
1. 交换排序
基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。
1.1 冒泡排序
冒泡排序的特性总结:
- 冒泡排序是一种非常容易理解的排序
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:稳定
1.2 快速排序
快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
// 假设按照升序对array数组中[left, right)区间中的元素进行排序 void QuickSort(int array[], int left, int right) { if(right - left <= 1) return; // 按照基准值对array数组的 [left, right)区间中的元素进行划分 int div = partion(array, left, right); // 划分成功后以div为边界形成了左右两部分 [left, div) 和 [div+1, right) // 递归排[left, div) QuickSort(array, left, div); // 递归排[div+1, right) QuickSort(array, div+1, right); }
上述为快速排序递归实现的主框架,发现与二叉树遍历前序遍历规则非常像,我们在写递归框架时可以想想二叉树前序遍历规则即可快速写出来,后序只需分析如何按照基准值来对区间中数据进行划分的方式即可。
将区间按照基准值划分为左右两半部分的常见方式有:
hoare版本
挖坑法
前后指针版本
1.3 快速排序优化
- 三数取中法选key
- 递归到小的子区间时,可以考虑使用插入排序
1.4 快速排序非递归
void QuickSortNonR(int* a, int left, int right) { Stack st; StackInit(&st); StackPush(&st, left); StackPush(&st, right); while (StackEmpty(&st) != 0) { right = StackTop(&st); StackPop(&st); left = StackTop(&st); StackPop(&st); if(right - left <= 1) continue; int div = PartSort1(a, left, right); // 以基准值为分割点,形成左右两部分:[left, div) 和 [div+1, right) StackPush(&st, div+1); StackPush(&st, right); StackPush(&st, left); StackPush(&st, div); } StackDestroy(&s); }
快速排序的特性总结:
- 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
- 时间复杂度:O(N*logN)
- 空间复杂度:O(logN)
- 稳定性:不稳定