transformers重要组件(模型与分词器)

news2025/1/10 19:29:16

1、模型: 

from transformers import AutoModel
 
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModel.from_pretrained(checkpoint)

除了像之前使用 AutoModel 根据 checkpoint 自动加载模型以外,我们也可以直接使用模型对应的 Model 类,例如 BERT 对应的就是 BertModel

from transformers import BertModel

model = BertModel.from_pretrained("bert-base-cased")

注意,在大部分情况下,我们都应该使用 AutoModel 来加载模型。这样如果我们想要使用另一个模型(比如把 BERT 换成 RoBERTa),只需修改 checkpoint,其他代码可以保持不变。

加载模型

所有存储在 HuggingFace Model Hub 上的模型都可以通过 Model.from_pretrained() 来加载权重,参数可以像上面一样是 checkpoint 的名称,也可以是本地路径(预先下载的模型目录),例如:

from transformers import BertModel

model = BertModel.from_pretrained("./models/bert/")

Model.from_pretrained() 会自动缓存下载的模型权重,默认保存到 ~/.cache/huggingface/transformers,我们也可以通过 HF_HOME 环境变量自定义缓存目录。

注意:

由于 checkpoint 名称加载方式需要连接网络,因此在大部分情况下我们都会采用本地路径的方式加载模型。

部分模型的 Hub 页面中会包含很多文件,我们通常只需要下载模型对应的 config.json 和 pytorch_model.bin,以及分词器对应的 tokenizer.jsontokenizer_config.json 和 vocab.txt

保存模型

保存模型通过调用 Model.save_pretrained() 函数实现,例如保存加载的 BERT 模型:

from transformers import AutoModel

model = AutoModel.from_pretrained("bert-base-cased")
model.save_pretrained("./models/bert-base-cased/")

这会在保存路径下创建两个文件:

  • config.json:模型配置文件,存储模型结构参数,例如 Transformer 层数、特征空间维度等;
  • pytorch_model.bin:又称为 state dictionary,存储模型的权重。

简单来说,配置文件记录模型的结构,模型权重记录模型的参数,这两个文件缺一不可。我们自己保存的模型同样通过 Model.from_pretrained() 加载,只需要传递保存目录的路径。

 2、分词器:

由于神经网络模型不能直接处理文本,因此我们需要先将文本转换为数字,这个过程被称为编码 (Encoding),其包含两个步骤:

  1. 使用分词器 (tokenizer) 将文本按词、子词、字符切分为 tokens;
  2. 将所有的 token 映射到对应的 token ID。

分词策略

根据切分粒度的不同,分词策略可以分为以下几种:

  • 按词切分 (Word-based)

  • 例如直接利用 Python 的 split() 函数按空格进行分词:

    tokenized_text = "Jim Henson was a puppeteer".split()
    print(tokenized_text)
    
    ['Jim', 'Henson', 'was', 'a', 'puppeteer']
    

    这种策略的问题是会将文本中所有出现过的独立片段都作为不同的 token,从而产生巨大的词表。而实际上很多词是相关的,例如 “dog” 和 “dogs”、“run” 和 “running”,如果给它们赋予不同的编号就无法表示出这种关联性。

    词表就是一个映射字典,负责将 token 映射到对应的 ID(从 0 开始)。神经网络模型就是通过这些 token ID 来区分每一个 token。

    当遇到不在词表中的词时,分词器会使用一个专门的 [UNK] token 来表示它是 unknown 的。显然,如果分词结果中包含很多 [UNK] 就意味着丢失了很多文本信息,因此一个好的分词策略,应该尽可能不出现 unknown token。

  • 按字符切分 (Character-based)

  • 这种策略把文本切分为字符而不是词语,这样就只会产生一个非常小的词表,并且很少会出现词表外的 tokens。

    但是从直觉上来看,字符本身并没有太大的意义,因此将文本切分为字符之后就会变得不容易理解。这也与语言有关,例如中文字符会比拉丁字符包含更多的信息,相对影响较小。此外,这种方式切分出的 tokens 会很多,例如一个由 10 个字符组成的单词就会输出 10 个 tokens,而实际上它们只是一个词。

    因此现在广泛采用的是一种同时结合了按词切分和按字符切分的方式——按子词切分 (Subword tokenization)。

  • **按子词切分 (Subword) **

    高频词直接保留,低频词被切分为更有意义的子词。例如 “annoyingly” 是一个低频词,可以切分为 “annoying” 和 “ly”,这两个子词不仅出现频率更高,而且词义也得以保留。下图展示了对 “Let’s do tokenization!“ 按子词切分的结果:

  • 可以看到,“tokenization” 被切分为了 “token” 和 “ization”,不仅保留了语义,而且只用两个 token 就表示了一个长词。这种策略只用一个较小的词表就可以覆盖绝大部分文本,基本不会产生 unknown token。尤其对于土耳其语等黏着语,几乎所有的复杂长词都可以通过串联多个子词构成。

加载与保存分词器

分词器的加载与保存与模型相似,使用 Tokenizer.from_pretrained() 和 Tokenizer.save_pretrained() 函数。例如加载并保存 BERT 模型的分词器:

from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
tokenizer.save_pretrained("./models/bert-base-cased/")

同样地,在大部分情况下我们都应该使用 AutoTokenizer 来加载分词器:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenizer.save_pretrained("./models/bert-base-cased/")

调用 Tokenizer.save_pretrained() 函数会在保存路径下创建三个文件:

  • special_tokens_map.json:映射文件,里面包含 unknown token 等特殊字符的映射关系;
  • tokenizer_config.json:分词器配置文件,存储构建分词器需要的参数;
  • vocab.txt:词表,一行一个 token,行号就是对应的 token ID(从 0 开始)。

编码与解码文本

前面说过,文本编码 (Encoding) 过程包含两个步骤:

  1. 分词:使用分词器按某种策略将文本切分为 tokens;
  2. 映射:将 tokens 转化为对应的 token IDs。

下面我们首先使用 BERT 分词器来对文本进行分词:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

sequence = "Using a Transformer network is simple"
tokens = tokenizer.tokenize(sequence)

print(tokens)
['Using', 'a', 'Trans', '##former', 'network', 'is', 'simple']

可以看到,BERT 分词器采用的是子词切分策略,它会不断切分词语直到获得词表中的 token,例如 “transformer” 会被切分为 “transform” 和 “##er”。

然后,我们通过 convert_tokens_to_ids() 将切分出的 tokens 转换为对应的 token IDs:

ids = tokenizer.convert_tokens_to_ids(tokens)

print(ids)
[7993, 170, 13809, 23763, 2443, 1110, 3014]

还可以通过 encode() 函数将这两个步骤合并,并且 encode() 会自动添加模型需要的特殊 token,例如 BERT 分词器会分别在序列的首尾添加 [CLS] 和 [SEP]:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

sequence = "Using a Transformer network is simple"
sequence_ids = tokenizer.encode(sequence)

print(sequence_ids)
[101, 7993, 170, 13809, 23763, 2443, 1110, 3014, 102]

其中 101 和 102 分别是 [CLS] 和 [SEP] 对应的 token IDs。

注意,上面这些只是为了演示。在实际编码文本时,最常见的是直接使用分词器进行处理,这样不仅会返回分词后的 token IDs,还包含模型需要的其他输入。例如 BERT 分词器还会自动在输入中添加 token_type_ids 和 attention_mask

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_text = tokenizer("Using a Transformer network is simple")
print(tokenized_text)
{'input_ids': [101, 7993, 170, 13809, 23763, 2443, 1110, 3014, 102], 
 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0], 
 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1]}

文本解码 (Decoding) 与编码相反,负责将 token IDs 转换回原来的字符串。注意,解码过程不是简单地将 token IDs 映射回 tokens,还需要合并那些被分为多个 token 的单词。下面我们通过 decode() 函数解码前面生成的 token IDs:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

decoded_string = tokenizer.decode([7993, 170, 11303, 1200, 2443, 1110, 3014])
print(decoded_string)

decoded_string = tokenizer.decode([101, 7993, 170, 13809, 23763, 2443, 1110, 3014, 102])
print(decoded_string)
Using a transformer network is simple
[CLS] Using a Transformer network is simple [SEP]

解码文本是一个重要的步骤,在进行文本生成、翻译或者摘要等 Seq2Seq (Sequence-to-Sequence) 任务时都会调用这一函数。

5.3 处理多段文本

现实场景中,我们往往会同时处理多段文本,而且模型也只接受批 (batch) 数据作为输入,即使只有一段文本,也需要将它组成一个只包含一个样本的 batch,例如:

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

sequence = "I've been waiting for a HuggingFace course my whole life."

tokens = tokenizer.tokenize(sequence)
ids = tokenizer.convert_tokens_to_ids(tokens)
# input_ids = torch.tensor(ids), This line will fail.
input_ids = torch.tensor([ids])
print("Input IDs:\n", input_ids)

output = model(input_ids)
print("Logits:\n", output.logits)
Input IDs: 
tensor([[ 1045,  1005,  2310,  2042,  3403,  2005,  1037, 17662, 12172,  2607,
          2026,  2878,  2166,  1012]])
Logits: 
tensor([[-2.7276,  2.8789]], grad_fn=<AddmmBackward0>)

这里我们通过 [ids] 构建了一个只包含一段文本的 batch,更常见的是送入包含多段文本的 batch:

batched_ids = [ids, ids, ids, ...]

注意,上面的代码仅作为演示。实际场景中,我们应该直接使用分词器对文本进行处理,例如对于上面的例子:

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

sequence = "I've been waiting for a HuggingFace course my whole life."

tokenized_inputs = tokenizer(sequence, return_tensors="pt")
print("Inputs Keys:\n", tokenized_inputs.keys())
print("\nInput IDs:\n", tokenized_inputs["input_ids"])

output = model(**tokenized_inputs)
print("\nLogits:\n", output.logits)
Inputs Keys:
 dict_keys(['input_ids', 'attention_mask'])

Input IDs:
tensor([[  101,  1045,  1005,  2310,  2042,  3403,  2005,  1037, 17662, 12172,
          2607,  2026,  2878,  2166,  1012,   102]])

Logits:
tensor([[-1.5607,  1.6123]], grad_fn=<AddmmBackward0>)

可以看到,分词器输出的结果中不仅包含 token IDs(input_ids),还会包含模型需要的其他输入项。前面我们之所以只输入 token IDs 模型也能正常运行,是因为它自动地补全了其他的输入项,例如 attention_mask 等,后面我们会具体介绍。

由于分词器自动在序列的首尾添加了 [CLS] 和 [SEP] token,所以上面两个例子中模型的输出是有差异的。因为 DistilBERT 预训练时是包含 [CLS] 和 [SEP] 的,所以下面的例子才是正确的使用方法。

Padding 操作

按批输入多段文本产生的一个直接问题就是:batch 中的文本有长有短,而输入张量必须是严格的二维矩形,维度为 (batch size,sequence length),即每一段文本编码后的 token IDs 数量必须一样多。例如下面的 ID 列表是无法转换为张量的:

batched_ids = [
    [200, 200, 200],
    [200, 200]
]

我们需要通过 Padding 操作,在短序列的结尾填充特殊的 padding token,使得 batch 中所有的序列都具有相同的长度,例如:

padding_id = 100

batched_ids = [
    [200, 200, 200],
    [200, 200, padding_id],
]

模型的 padding token ID 可以通过其分词器的 pad_token_id 属性获得。下面我们尝试将两段文本分别以独立以及 batch 的形式送入到模型中:

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

sequence1_ids = [[200, 200, 200]]
sequence2_ids = [[200, 200]]
batched_ids = [
    [200, 200, 200],
    [200, 200, tokenizer.pad_token_id],
]

print(model(torch.tensor(sequence1_ids)).logits)
print(model(torch.tensor(sequence2_ids)).logits)
print(model(torch.tensor(batched_ids)).logits)
tensor([[ 1.5694, -1.3895]], grad_fn=<AddmmBackward0>)
tensor([[ 0.5803, -0.4125]], grad_fn=<AddmmBackward0>)
tensor([[ 1.5694, -1.3895],
        [ 1.3374, -1.2163]], grad_fn=<AddmmBackward0>)

问题出现了,使用 padding token 填充的序列的结果竟然与其单独送入模型时不同!

这是因为模型默认会编码输入序列中的所有 token 以建模完整的上下文,因此这里会将填充的 padding token 也一同编码进去,从而生成不同的语义表示。

因此,在进行 Padding 操作时,我们必须明确告知模型哪些 token 是我们填充的,它们不应该参与编码。这就需要使用到 Attention Mask 了,在前面的例子中相信你已经多次见过它了。

Attention Mask

Attention Mask 是一个尺寸与 input IDs 完全相同,且仅由 0 和 1 组成的张量,0 表示对应位置的 token 是填充符,不参与计算。当然,一些特殊的模型结构也会借助 Attention Mask 来遮蔽掉指定的 tokens。

对于上面的例子,如果我们通过 attention_mask 标出填充的 padding token 的位置,计算结果就不会有问题了:

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

sequence1_ids = [[200, 200, 200]]
sequence2_ids = [[200, 200]]
batched_ids = [
    [200, 200, 200],
    [200, 200, tokenizer.pad_token_id],
]
batched_attention_masks = [
    [1, 1, 1],
    [1, 1, 0],
]

print(model(torch.tensor(sequence1_ids)).logits)
print(model(torch.tensor(sequence2_ids)).logits)
outputs = model(
    torch.tensor(batched_ids), 
    attention_mask=torch.tensor(batched_attention_masks))
print(outputs.logits)
tensor([[ 1.5694, -1.3895]], grad_fn=<AddmmBackward0>)
tensor([[ 0.5803, -0.4125]], grad_fn=<AddmmBackward0>)
tensor([[ 1.5694, -1.3895],
        [ 0.5803, -0.4125]], grad_fn=<AddmmBackward0>)

正如前面强调的那样,在实际使用时,我们应该直接使用分词器对文本进行处理,它不仅会向 token 序列中添加模型需要的特殊字符(例如 [CLS],[SEP]),还会自动生成对应的 Attention Mask。

目前大部分 Transformer 模型只能接受长度不超过 512 或 1024 的 token 序列,因此对于长序列,有以下三种处理方法:

  1. 使用一个支持长文的 Transformer 模型,例如 Longformer 和 LED(最大长度 4096);
  2. 设定最大长度 max_sequence_length 以截断输入序列:sequence = sequence[:max_sequence_length]
  3. 将长文切片为短文本块 (chunk),然后分别对每一个 chunk 编码。在后面的快速分词器中,我们会详细介绍。

直接使用分词器

正如前面所说,在实际使用时,我们应该直接使用分词器来完成包括分词、转换 token IDs、Padding、构建 Attention Mask、截断等操作。例如:

from transformers import AutoTokenizer

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

sequences = [
    "I've been waiting for a HuggingFace course my whole life.", 
    "So have I!"
]

model_inputs = tokenizer(sequences)
print(model_inputs)
{'input_ids': [
    [101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 2878, 2166, 1012, 102], 
    [101, 2061, 2031, 1045, 999, 102]], 
 'attention_mask': [
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 
    [1, 1, 1, 1, 1, 1]]
}

可以看到,分词器的输出包含了模型需要的所有输入项。对于 DistilBERT 模型,就是 input IDs(input_ids)和 Attention Mask(attention_mask)。

Padding 操作通过 padding 参数来控制:

  • padding="longest": 将序列填充到当前 batch 中最长序列的长度;
  • padding="max_length":将所有序列填充到模型能够接受的最大长度,例如 BERT 模型就是 512。
from transformers import AutoTokenizer

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

sequences = [
    "I've been waiting for a HuggingFace course my whole life.", 
    "So have I!"
]

model_inputs = tokenizer(sequences, padding="longest")
print(model_inputs)

model_inputs = tokenizer(sequences, padding="max_length")
print(model_inputs)
{'input_ids': [
    [101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 2878, 2166, 1012, 102], 
    [101, 2061, 2031, 1045, 999, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 
 'attention_mask': [
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 
    [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
}

{'input_ids': [
    [101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 2878, 2166, 1012, 102, 0, 0, 0, 0, 0, 0, 0, 0, ...], 
    [101, 2061, 2031, 1045, 999, 102, 0, 0, 0, ...]], 
 'attention_mask': [
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, ...], 
    [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...]]
}

截断操作通过 truncation 参数来控制,如果 truncation=True,那么大于模型最大接受长度的序列都会被截断,例如对于 BERT 模型就会截断长度超过 512 的序列。此外,也可以通过 max_length 参数来控制截断长度:

from transformers import AutoTokenizer

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

sequences = [
    "I've been waiting for a HuggingFace course my whole life.", 
    "So have I!"
]

model_inputs = tokenizer(sequences, max_length=8, truncation=True)
print(model_inputs)
{'input_ids': [
    [101, 1045, 1005, 2310, 2042, 3403, 2005, 102], 
    [101, 2061, 2031, 1045, 999, 102]], 
 'attention_mask': [
    [1, 1, 1, 1, 1, 1, 1, 1], 
    [1, 1, 1, 1, 1, 1]]
}

分词器还可以通过 return_tensors 参数指定返回的张量格式:设为 pt 则返回 PyTorch 张量;tf 则返回 TensorFlow 张量,np 则返回 NumPy 数组。例如:

from transformers import AutoTokenizer

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

sequences = [
    "I've been waiting for a HuggingFace course my whole life.", 
    "So have I!"
]

model_inputs = tokenizer(sequences, padding=True, return_tensors="pt")
print(model_inputs)

model_inputs = tokenizer(sequences, padding=True, return_tensors="np")
print(model_inputs)
{'input_ids': tensor([
    [  101,  1045,  1005,  2310,  2042,  3403,  2005,  1037, 17662, 12172,
      2607,  2026,  2878,  2166,  1012,   102],
    [  101,  2061,  2031,  1045,   999,   102,     0,     0,     0,     0,
         0,     0,     0,     0,     0,     0]]), 
 'attention_mask': tensor([
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
}

{'input_ids': array([
    [  101,  1045,  1005,  2310,  2042,  3403,  2005,  1037, 17662,
     12172,  2607,  2026,  2878,  2166,  1012,   102],
    [  101,  2061,  2031,  1045,   999,   102,     0,     0,     0,
         0,     0,     0,     0,     0,     0,     0]]), 
 'attention_mask': array([
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
}

实际使用分词器时,我们通常会同时进行 padding 操作和截断操作,并设置返回格式为 Pytorch 张量,这样就可以直接将分词结果送入模型:

from transformers import AutoTokenizer, AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

sequences = [
    "I've been waiting for a HuggingFace course my whole life.", 
    "So have I!"
]

tokens = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt")
print(tokens)
output = model(**tokens)
print(output.logits)
{'input_ids': tensor([
    [  101,  1045,  1005,  2310,  2042,  3403,  2005,  1037, 17662, 12172,
      2607,  2026,  2878,  2166,  1012,   102],
    [  101,  2061,  2031,  1045,   999,   102,     0,     0,     0,     0,
         0,     0,     0,     0,     0,     0]]), 
 'attention_mask': tensor([
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])}

tensor([[-1.5607,  1.6123],
        [-3.6183,  3.9137]], grad_fn=<AddmmBackward0>)

在 padding=True, truncation=True 设置下,同一个 batch 中的序列都会 padding 到相同的长度,并且大于模型最大接受长度的序列会被自动截断。

编码句子对

除了对单段文本进行编码以外(batch 只是并行地编码多个单段文本),对于 BERT 等包含“句子对”预训练任务的模型,它们的分词器都支持对“句子对”进行编码,例如:

from transformers import AutoTokenizer

checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

inputs = tokenizer("This is the first sentence.", "This is the second one.")
print(inputs)

tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"])
print(tokens)
{'input_ids': [101, 2023, 2003, 1996, 2034, 6251, 1012, 102, 2023, 2003, 1996, 2117, 2028, 1012, 102], 
 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], 
 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

['[CLS]', 'this', 'is', 'the', 'first', 'sentence', '.', '[SEP]', 'this', 'is', 'the', 'second', 'one', '.', '[SEP]']

此时分词器会使用 [SEP] token 拼接两个句子,输出形式为“[CLS] sentence1 [SEP] sentence2 [SEP]”的 token 序列,这也是 BERT 模型预期的“句子对”输入格式。

返回结果中除了前面我们介绍过的 input_ids 和 attention_mask 之外,还包含了一个 token_type_ids 项,用于标记哪些 token 属于第一个句子,哪些属于第二个句子。如果我们将上面例子中的 token_type_ids 项与 token 序列对齐:

['[CLS]', 'this', 'is', 'the', 'first', 'sentence', '.', '[SEP]', 'this', 'is', 'the', 'second', 'one', '.', '[SEP]']
[      0,      0,    0,     0,       0,          0,   0,       0,      1,    1,     1,        1,     1,   1,       1]

就可以看到第一个句子“[CLS] sentence1 [SEP]”所有 token 的 type ID 都为 0,而第二个句子“sentence2 [SEP]”对应的 token type ID 都为 1。

如果我们选择其他模型,分词器的输出不一定会包含 token_type_ids 项(例如 DistilBERT 模型)。分词器只需保证输出格式与模型预训练时的输入一致即可。

实际使用时,我们不需要去关注编码结果中是否包含 token_type_ids 项,分词器会根据 checkpoint 自动调整输出格式,例如:

from transformers import AutoTokenizer

checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

sentence1_list = ["First sentence.", "This is the second sentence.", "Third one."]
sentence2_list = ["First sentence is short.", "The second sentence is very very very long.", "ok."]

tokens = tokenizer(
    sentence1_list,
    sentence2_list,
    padding=True,
    truncation=True,
    return_tensors="pt"
)
print(tokens)
print(tokens['input_ids'].shape)
{'input_ids': tensor([
        [ 101, 2034, 6251, 1012,  102, 2034, 6251, 2003, 2460, 1012,  102,    0,
            0,    0,    0,    0,    0,    0],
        [ 101, 2023, 2003, 1996, 2117, 6251, 1012,  102, 1996, 2117, 6251, 2003,
         2200, 2200, 2200, 2146, 1012,  102],
        [ 101, 2353, 2028, 1012,  102, 7929, 1012,  102,    0,    0,    0,    0,
            0,    0,    0,    0,    0,    0]]), 
 'token_type_ids': tensor([
        [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 
 'attention_mask': tensor([
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
}
torch.Size([3, 18])

可以看到分词器成功地输出了形式为“[CLS] sentence1 [SEP] sentence2 [SEP]”的 token 序列,并且将三个序列都 padding 到了相同的长度。

5.4 添加 Token

实际操作中,我们还经常会遇到输入中需要包含特殊标记符的情况,例如使用 [ENT_START] 和 [ENT_END] 标记出文本中的实体。由于这些自定义 token 并不在预训练模型原来的词表中,因此直接运用分词器处理就会出现问题。

例如直接使用 BERT 分词器处理下面的句子:

from transformers import AutoTokenizer

checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

sentence = 'Two [ENT_START] cars [ENT_END] collided in a [ENT_START] tunnel [ENT_END] this morning.'
print(tokenizer.tokenize(sentence))
['two', '[', 'en', '##t', '_', 'start', ']', 'cars', '[', 'en', '##t', '_', 'end', ']', 'collided', 'in', 'a', '[', 'en', '##t', '_', 'start', ']', 'tunnel', '[', 'en', '##t', '_', 'end', ']', 'this', 'morning', '.']

由于分词器无法识别 [ENT_START] 和 [ENT_END] ,因此将它们都当作未知字符处理,例如“[ENT_END]”被切分成了 '[''en''##t''_''end'']' 六个 token。

此外,一些领域的专业词汇,例如使用多个词语的缩写拼接而成的医学术语,同样也不在模型的词表中,因此也会出现上面的问题。此时我们就需要将这些新 token 添加到模型的词表中,让分词器与模型可以识别并处理这些 token。

添加新 token

Transformers 库提供了两种方式来添加新 token,分别是:

  • add_tokens() 添加普通 token:参数是新 token 列表,如果 token 不在词表中,就会被添加到词表的最后。

    checkpoint = "bert-base-uncased"
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        
    num_added_toks = tokenizer.add_tokens(["new_token1", "my_new-token2"])
    print("We have added", num_added_toks, "tokens")
    
    We have added 2 tokens
    

    为了防止 token 已经包含在词表中,我们还可以预先对新 token 列表进行过滤:

    new_tokens = ["new_token1", "my_new-token2"]
    new_tokens = set(new_tokens) - set(tokenizer.vocab.keys())
    tokenizer.add_tokens(list(new_tokens))
    
  • add_special_tokens() 添加特殊 token:参数是包含特殊 token 的字典,键值只能从 bos_tokeneos_tokenunk_tokensep_tokenpad_tokencls_tokenmask_tokenadditional_special_tokens 中选择。同样地,如果 token 不在词表中,就会被添加到词表的最后。添加后,还可以通过特殊属性来访问这些 token,例如 tokenizer.cls_token 就指向 cls token。

    checkpoint = "bert-base-uncased"
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        
    special_tokens_dict = {"cls_token": "[MY_CLS]"}
        
    num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
    print("We have added", num_added_toks, "tokens")
        
    assert tokenizer.cls_token == "[MY_CLS]"
    
    We have added 1 tokens
    

    我们也可以使用 add_tokens() 添加特殊 token,只需要额外设置参数 special_tokens=True

    checkpoint = "bert-base-uncased"
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
        
    num_added_toks = tokenizer.add_tokens(["[NEW_tok1]", "[NEW_tok2]"])
    num_added_toks = tokenizer.add_tokens(["[NEW_tok3]", "[NEW_tok4]"], special_tokens=True)
        
    print("We have added", num_added_toks, "tokens")
    print(tokenizer.tokenize('[NEW_tok1] Hello [NEW_tok2] [NEW_tok3] World [NEW_tok4]!'))
    
    We have added 2 tokens
    ['[new_tok1]', 'hello', '[new_tok2]', '[NEW_tok3]', 'world', '[NEW_tok4]', '!']
    

    特殊 token 的标准化 (normalization) 与普通 token 有一些不同,比如不会被小写。

    这里我们使用的是不区分大小写的 BERT 模型,因此分词后添加的普通 token [NEW_tok1] 和 [NEW_tok2] 都被处理为了小写,而添加的特殊 token [NEW_tok3] 和 [NEW_tok4] 则保持大写。

对于前面的例子,很明显实体标记符 [ENT_START] 和 [ENT_END] 属于特殊 token,因此按添加特殊 token 的方式进行:

from transformers import AutoTokenizer

checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

num_added_toks = tokenizer.add_tokens(['[ENT_START]', '[ENT_END]'], special_tokens=True)
# num_added_toks = tokenizer.add_special_tokens({'additional_special_tokens': ['[ENT_START]', '[ENT_END]']})
print("We have added", num_added_toks, "tokens")

sentence = 'Two [ENT_START] cars [ENT_END] collided in a [ENT_START] tunnel [ENT_END] this morning.'

print(tokenizer.tokenize(sentence))
We have added 2 tokens
['two', '[ENT_START]', 'cars', '[ENT_END]', 'collided', 'in', 'a', '[ENT_START]', 'tunnel', '[ENT_END]', 'this', 'morning', '.']

可以看到,分词器成功地将 [ENT_START] 和 [ENT_END] 识别为 token,并且保持大写。

调整 embedding 矩阵

向词表中添加新 token 后,必须重置模型 embedding 矩阵的大小,也就是向矩阵中添加新 token 对应的 embedding,这样模型才可以正常工作,将 token 映射到对应的 embedding。

调整 embedding 矩阵通过 resize_token_embeddings() 函数来实现,例如对于前面的例子:

from transformers import AutoTokenizer, AutoModel

checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModel.from_pretrained(checkpoint)

print('vocabulary size:', len(tokenizer))
num_added_toks = tokenizer.add_tokens(['[ENT_START]', '[ENT_END]'], special_tokens=True)
print("After we add", num_added_toks, "tokens")
print('vocabulary size:', len(tokenizer))

model.resize_token_embeddings(len(tokenizer))
print(model.embeddings.word_embeddings.weight.size())

# Randomly generated matrix
print(model.embeddings.word_embeddings.weight[-2:, :])
vocabulary size: 30522
After we add 2 tokens
vocabulary size: 30524
torch.Size([30524, 768])

tensor([[-0.0325, -0.0224,  0.0044,  ..., -0.0088, -0.0078, -0.0110],
        [-0.0005, -0.0167, -0.0009,  ...,  0.0110, -0.0282, -0.0013]],
       grad_fn=<SliceBackward0>)

可以看到,在添加 [ENT_START] 和 [ENT_END] 之后,分词器的词表大小从 30522 增加到了 30524,模型 embedding 矩阵的大小也成功调整为了 30524×768。

在默认情况下,新添加 token 的 embedding 是随机初始化的。

我们尝试打印出新添加 token 对应的 embedding(新 token 会添加在词表的末尾,因此只需打印出最后两行)。如果你多次运行上面的代码,就会发现每次打印出的 [ENT_START] 和 [ENT_END] 的 embedding 是不同的。

初始化为已有 token 的值

descriptions = ['start of entity', 'end of entity']

with torch.no_grad():
    for i, token in enumerate(reversed(descriptions), start=1):
        tokenized = tokenizer.tokenize(token)
        print(tokenized)
        tokenized_ids = tokenizer.convert_tokens_to_ids(tokenized)
        new_embedding = model.embeddings.word_embeddings.weight[tokenized_ids].mean(axis=0)
        model.embeddings.word_embeddings.weight[-i, :] = new_embedding.clone().detach().requires_grad_(True)
print(model.embeddings.word_embeddings.weight[-2:, :])
['end', 'of', 'entity']
['start', 'of', 'entity']
tensor([[-0.0340, -0.0144, -0.0441,  ..., -0.0016,  0.0318, -0.0151],
        [-0.0060, -0.0202, -0.0312,  ..., -0.0084,  0.0193, -0.0296]],
       grad_fn=<SliceBackward0>)

可以看到,这里成功地将 [ENT_START] 的 embedding 初始化为“start”、“of”、“entity”三个 token 的平均值,将 [ENT_END] 初始化为“end”、“of”、“entity”的平均值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1436098.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

mhz_c1f

信息收集 探测到存活主机的IP地址为 192.168.101.32 # nmap -sT --min-rate 10000 -p- 192.168.101.32 -oN port.nmap Starting Nmap 7.94 ( https://nmap.org ) at 2024-02-03 13:41 CST Nmap scan report for 192.168.101.32 Host is up (0.0020s latency). Not shown: 6553…

高阶滤波器

一阶后向差分&#xff1a;s&#xff08;1-z^(-1)&#xff09;/T dx/dt[x(k)-x(k-1)]/T[x(k)-x(k)z^(-1)]/Tx(k)*&#xff08;1-z^(-1)&#xff09;/T 一阶前向差分&#xff1a;s(z-1)/T dx/dt[x(k1)-x(k)]/T[z*x(k)-x(k)]/Tx(k)*(z-1)/T 双线性差分&#xff1a;s(2/T)*(1-z…

环境配置:Udacity的Self-Driving项目安装运行

前言 Udacity的自动驾驶工程师纳米学位项目&#xff08;Self-Driving Car Engineer Nanodegree Program&#xff09;是一项面向学习者的前沿技术项目&#xff0c;旨在提供全面的自动驾驶工程师培训。该项目由Udacity与自动驾驶领域的领先公司和专业人士合作开发&#xff0c;涵…

常用的EasyExcel表格处理-2(动态合并、自适应宽高)

EasyExcel官网&#xff1a;点击查看 1、动态合并单元格 此处主要根据自定义处理类ExcelFillCellMergeStrategy进行处理&#xff0c;具体内容可看代码注释。 1.1 前端调用controller PostMapping("/download/template")public void toDoExport(HttpServletResponse…

linux k8s 源码编译及单集群测试

目录 概述实践安装插件docker 在线安装containerd安装二进制安装yum安装修改containder配置文件 cnietcdrsyncgo设置golang代理 安装CFSSL下载kubernetes代码编译启动本地单节点集群问题k8s没有被正常启动该如何k8s正常启动日志测试 结束 概述 此文详细说明在 centos 7上编译 k…

専攻春节钜惠

専攻春节钜惠 大家好&#xff0c;新春佳节到来之际&#xff0c;为了答谢大家多年来的支持厚爱&#xff0c;也为了更广泛的推广VBA应用&#xff0c;“VBA语言専攻”在春节期间再次推出钜惠活动&#xff0c;时间2月9日到2月17日&#xff08;大年三十到正月初八&#xff09; 1 &…

算法学习——LeetCode力扣数组篇

算法学习——LeetCode力扣数组篇 704. 二分查找 704. 二分查找 - 力扣&#xff08;LeetCode&#xff09; 描述 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xff0c;写一个函数搜索 nums 中的 target&#xff0c;如果目标值…

C++中string类的基本用法

文章目录 一、string的默认成员函数1. 构造函数2.赋值重载 二、string的常见容量操作1.size、length、capacity2.clear3.empty4. reserve5. resize 三、string的访问及遍历操作1. operator[]2. 迭代器3. 范围for 四、string的修改操作1. push_back2. append3. operator4. c_str…

【软考设计师笔记】一篇文章带你了解数据库

【考证须知】IT行业高含金量的证书(传送门)&#x1f496; 【软件设计师笔记】计算机系统基础知识考点(传送门) &#x1f496; 【软件设计师笔记】程序语言设计考点(传送门) &#x1f496; 【软件设计师笔记】操作系统考点(传送门)&#x1f496; 【软件设计师笔记】什么是软…

校园圈子交友系统---在你身边的脱单神器!APP小程序H5,三端都有,源码交付,随意二开!

相比社会的交友环境&#xff0c;校园交友更加封闭也更容易成功&#xff0c;很多朋友都能在校园里找到和自己志同道合的伙伴&#xff0c;或者一段适合自己的缘分 有多种不同的聊天方法&#xff0c;语音&#xff0c;文本&#xff0c;视频&#xff0c;满足社会需求&#xff0c;软…

特征工程:特征构建

目录 一、前言 二、正文 Ⅰ.分类特征重新编码 ①分类特征 ②离散特征 ③多标签类别编码 Ⅱ.数值特征重新编码 ①多项式 ②多个变量的多项式特征 Ⅲ.文本数据的特征构建 ①文本词频条形图 ②词袋模型 ③TF-IDF矩阵 三、结语 一、前言 特征工程中的特征构建的主要目的是生…

记一次使用ASMLIB标记磁盘导致的数据库系统宕机案例

在对某医院HIS数据库环境搜集过程中&#xff0c;发现这套Oracle RAC数据库没有正确使用到multipath提供的多路径磁盘&#xff0c;本着对用户及合作伙伴负责的态度&#xff0c;将过程做一描述说明&#xff0c;以及提出一点解决问题的思路建议。 系统环境&#xff1a; 操作系统…

第八届:世界3D渲染挑战赛《无尽阶梯》正式开启

全世界的3D艺术创作者们引颈期盼的盛事“全球3D渲染艺术大奖赛”已迈入第八个年头。本届比赛的主题为“无尽的阶梯”&#xff0c;参赛者们可通过挑战赛展现自身的创造力&#xff0c;比赛在行业内拥有极高的知名度&#xff0c;含金量十足&#xff0c;参赛这可通过这里提高自己在…

[React] ref属性

简介 ref 即 reference &#xff0c;是 React 提供给我们的安全访问 DOM 元素或者某个组件实例的句柄。 组件被调用时会新建一个该组件的实例&#xff0c;而 ref 就会指向这个实例。它可以是一个回调函数&#xff0c;这个回调函数会在组件被挂载后立即执行。 为了防止内存泄漏…

【C语言】贪吃蛇 详解

该项目需要的技术要点 C语言函数、枚举、结构体、动态内存管理、预处理指令、链表、Win32API等。 由于篇幅限制 和 使知识模块化&#xff0c; 若想了解 使用到的 Win32API 的知识&#xff1a;请点击跳转&#xff1a;【Win32API】贪吃蛇会使用到的 Win32API 目录 1. 贪吃蛇游…

配置Jenkins自动构建打包项目

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 需求说明 1、给A项目配置jenkins每2小时无条件自动构建一次&#xff0c;无论是否有代码提交。 2、给B项目配置jenkins每15分钟检…

如何在Mac上允许主流浏览器使用弹出式窗口?这里有详细步骤

这篇文章教你如何关闭流行的Mac浏览器上的弹出窗口阻止程序,包括Safari、Chrome和Firefox。它还探讨了你可能希望这样做的原因及其影响。 如何在Mac上允许Safari使用弹出窗口 如果你经常在Mac上使用Safari,你会注意到默认情况下弹出窗口阻止程序是打开的。有时,这并不方便…

Python进阶----在线翻译器(Python3的百度翻译爬虫)

目录 一、此处需要安装第三方库requests: 二、抓包分析及编写Python代码 1、打开百度翻译的官网进行抓包分析。 2、编写请求模块 3、输出我们想要的消息 三、所有代码如下&#xff1a; 一、此处需要安装第三方库requests: 在Pycharm平台终端或者命令提示符窗口中输入以下代…

Springboot集成jasypt实现配置文件加密

Jasypt它提供了单密钥对称加密和非对称加密两种加密方式。 单密钥对称加密&#xff1a;一个密钥加盐&#xff0c;可以同时用作内容的加密和解密依据&#xff1b; 非对称加密&#xff1a;使用公钥和私钥两个密钥&#xff0c;才可以对内容加密和解密&#xff1b; 我们以单密钥对称…

鸿蒙内核框架

1 内核概述 内核简介 用户最常见到并与之交互的操作系统界面&#xff0c;其实只是操作系统最外面的一层。操作系统最重要的任务&#xff0c;包括管理硬件设备&#xff0c;分配系统资源等&#xff0c;我们称之为操作系统内在最重要的核心功能。而实现这些核心功能的操作系统模…