【计算机网络基础篇】学习笔记系列之一《TCP/IP 网络模型》

news2025/1/10 19:26:48

文章目录

    • 1、问题提出
    • 2,网络协议是分层的
    • 3,应用层
    • 4,传输层
    • 5,网络层
    • 6,网络接口层
    • 7,总结

1、问题提出

为什么要有 TCP/IP 网络模型?

不同设备上的进程间通信需要通过一套通用的网络协议进行网络通信。

对于同一台设备上的进程间通信,有很多种方式,比如有管道、消息队列、共享内存、信号等方式,而对于不同设备上的进程间通信,就需要网络通信,而设备是多样性的,所以要兼容多种多样的设备,就协商出了一套通用的网络协议。

2,网络协议是分层的

这个网络协议是分层的,每一层都有各自的作用和职责,接下来就根据「 TCP/IP 网络模型」分别对每一层进行介绍。

3,应用层

最上层的,也是我们能直接接触到的就是应用层(Application Layer),我们电脑或手机使用的应用软件都是在应用层实现。那么,当两个不同设备的应用需要通信的时候,应用就把应用数据传给下一层,也就是传输层。

所以,应用层只需要专注于为用户提供应用功能,比如 HTTP、FTP、Telnet、DNS、SMTP等。

应用层是不用去关心数据是如何传输的,就类似于,我们寄快递的时候,只需要把包裹交给快递员,由他负责运输快递,我们不需要关心快递是如何被运输的。

而且应用层是工作在操作系统中的用户态,传输层及以下则工作在内核态。

4,传输层

应用层的数据包会传给传输层,传输层(Transport Layer)是为应用层提供网络支持的。
在这里插入图片描述
在传输层会有两个传输协议,分别是 TCP 和 UDP。

TCP 的全称叫传输控制协议(Transmission Control Protocol),大部分应用使用的正是 TCP 传输层协议,比如 HTTP 应用层协议。TCP 相比 UDP 多了很多特性,比如流量控制、超时重传、拥塞控制等,这些都是为了保证数据包能可靠地传输给对方。

UDP 相对来说就很简单,简单到只负责发送数据包,不保证数据包是否能抵达对方,但它实时性相对更好,传输效率也高。当然,UDP 也可以实现可靠传输,把 TCP 的特性在应用层上实现就可以,不过要实现一个商用的可靠 UDP 传输协议,也不是一件简单的事情。

应用需要传输的数据可能会非常大,如果直接传输就不好控制,因此当传输层的数据包大小超过 MSS(TCP 最大报文段长度) ,就要将数据包分块,这样即使中途有一个分块丢失或损坏了,只需要重新发送这一个分块,而不用重新发送整个数据包。在 TCP 协议中,我们把每个分块称为一个 TCP 段(TCP Segment)。
在这里插入图片描述
当设备作为接收方时,传输层则要负责把数据包传给应用,但是一台设备上可能会有很多应用在接收或者传输数据,因此需要用一个编号将应用区分开来,这个编号就是端口。

比如 80 端口通常是 Web 服务器用的,22 端口通常是远程登录服务器用的。而对于浏览器(客户端)中的每个标签栏都是一个独立的进程,操作系统会为这些进程分配临时的端口号。

由于传输层的报文中会携带端口号,因此接收方可以识别出该报文是发送给哪个应用。

5,网络层

传输层可能大家刚接触的时候,会认为它负责将数据从一个设备传输到另一个设备,事实上它并不负责。

实际场景中的网络环节是错综复杂的,中间有各种各样的线路和分叉路口,如果一个设备的数据要传输给另一个设备,就需要在各种各样的路径和节点进行选择,而传输层的设计理念是简单、高效、专注,如果传输层还负责这一块功能就有点违背设计原则了。

也就是说,我们不希望传输层协议处理太多的事情,只需要服务好应用即可,让其作为应用间数据传输的媒介,帮助实现应用到应用的通信,而实际的传输功能就交给下一层,也就是网络层(Internet Layer)。
在这里插入图片描述
网络层最常使用的是 IP 协议(Internet Protocol),IP 协议会将传输层的报文作为数据部分,再加上 IP 包头组装成 IP 报文,如果 IP 报文大小超过 MTU(以太网中一般为 1500 字节)就会再次进行分片,得到一个即将发送到网络的 IP 报文。

在这里插入图片描述
网络层负责将数据从一个设备传输到另一个设备,世界上那么多设备,又该如何找到对方呢?因此,网络层需要有区分设备的编号。

我们一般用 IP 地址给设备进行编号,对于 IPv4 协议, IP 地址共 32 位,分成了四段(比如,192.168.100.1),每段是 8 位。只有一个单纯的 IP 地址虽然做到了区分设备,但是寻址起来就特别麻烦,全世界那么多台设备,难道一个一个去匹配?这显然不科学。

因此,需要将 IP 地址分成两种意义:

  • 一个是网络号,负责标识该 IP 地址是属于哪个「子网」的;
  • 一个是主机号,负责标识同一「子网」下的不同主机;
    怎么分的呢?这需要配合子网掩码才能算出 IP 地址 的网络号和主机号。

举个例子,比如 10.100.122.0/24,后面的/24表示就是 255.255.255.0 子网掩码,255.255.255.0 二进制是「11111111-11111111-11111111-00000000」,大家数数一共多少个1?不用数了,是 24 个1,为了简化子网掩码的表示,用/24代替255.255.255.0。

知道了子网掩码,该怎么计算出网络地址和主机地址呢?

将 10.100.122.2 和 255.255.255.0 进行按位与运算,就可以得到网络号,如下图:
在这里插入图片描述
将 255.255.255.0 取反后与IP地址进行进行按位与运算,就可以得到主机号。

大家可以去搜索下子网掩码计算器,自己改变下「掩码位」的数值,就能体会到子网掩码的作用了。

在这里插入图片描述
那么在寻址的过程中,先匹配到相同的网络号(表示要找到同一个子网),才会去找对应的主机。

除了寻址能力, IP 协议还有另一个重要的能力就是路由。实际场景中,两台设备并不是用一条网线连接起来的,而是通过很多网关、路由器、交换机等众多网络设备连接起来的,那么就会形成很多条网络的路径,因此当数据包到达一个网络节点,就需要通过路由算法决定下一步走哪条路径。

路由器寻址工作中,就是要找到目标地址的子网,找到后进而把数据包转发给对应的网络内。

在这里插入图片描述
所以,IP 协议的寻址作用是告诉我们去往下一个目的地该朝哪个方向走,路由则是根据「下一个目的地」选择路径。寻址更像在导航,路由更像在操作方向盘。

6,网络接口层

生成了 IP 头部之后,接下来要交给网络接口层(Link Layer)在 IP 头部的前面加上 MAC 头部,并封装成数据帧(Data frame)发送到网络上。
在这里插入图片描述
IP 头部中的接收方 IP 地址表示网络包的目的地,通过这个地址我们就可以判断要将包发到哪里,但在以太网的世界中,这个思路是行不通的。

什么是以太网呢?电脑上的以太网接口,Wi-Fi接口,以太网交换机、路由器上的千兆,万兆以太网口,还有网线,它们都是以太网的组成部分。以太网就是一种在「局域网」内,把附近的设备连接起来,使它们之间可以进行通讯的技术。

以太网在判断网络包目的地时和 IP 的方式不同,因此必须采用相匹配的方式才能在以太网中将包发往目的地,而 MAC 头部就是干这个用的,所以,在以太网进行通讯要用到 MAC 地址。

MAC 头部是以太网使用的头部,它包含了接收方和发送方的 MAC 地址等信息,我们可以通过 ARP 协议获取对方的 MAC 地址。

所以说,网络接口层主要为网络层提供「链路级别」传输的服务,负责在以太网、WiFi 这样的底层网络上发送原始数据包,工作在网卡这个层次,使用 MAC 地址来标识网络上的设备。

7,总结

综上所述,TCP/IP 网络通常是由上到下分成 4 层,分别是应用层,传输层,网络层和网络接口层。
在这里插入图片描述
再给大家贴一下每一层的封装格式:

在这里插入图片描述
网络接口层的传输单位是帧(frame),IP 层的传输单位是包(packet),TCP 层的传输单位是段(segment),HTTP 的传输单位则是消息或报文(message)。但这些名词并没有什么本质的区分,可以统称为数据包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1436034.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

three.js 向量方向(归一化.normalize)

效果&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div><div><p><el-button type"primary…

Springboot启动出现Waiting for changelog lock...问题

今天在开发的时候&#xff0c;Springboot启动的时候出现Waiting for changelog lock…问题. 问题原因&#xff1a;该问题就是发生了数据库的死锁问题&#xff0c;可能是由于一个杀死的liquibase进程没有释放它对DATABASECHANGELOGLOCK表的锁定&#xff0c;导致服务启动失败&…

Blender_查看版本

Blender_查看版本 烦人的烦恼&#xff0c;没找见哪儿可以查看版本&#xff1f; 算是个隐蔽的角落&#xff01;

Rust-获取随机数练习案例

文章目录 前言一、取官网示例猜数字游戏玩一玩cargo checkTOML文件 二、完整代码总结 前言 Rust学习系列-获取随机数练习案例&#xff0c;基于cargo 进行案例练习&#xff0c;过程中会使用cargo check&#xff1b; cargo run&#xff1b;等命名&#xff0c;同时了解基础的let …

【Java EE】----Bean的作用域和生命周期

1.Bean的作用域 定义&#xff1a;Bean 的作⽤域是指 Bean 在 Spring 整个框架中的某种⾏为模式&#xff0c;⽐如 singleton 单例作⽤域&#xff0c;就 表示 Bean 在整个 Spring 中只有⼀份 &#xff08;产生的原因&#xff0c;Bean 默认情况下是单例状态&#xff08;singleton&…

2024数据分析管理、数字经济与教育国际学术会议(ICDAMDEE2024)

会议简介 2024年数据分析管理、数字经济和教育国际学术会议&#xff08;ICDAMDEE 2024&#xff09;将在武汉举行。会议不仅展示了来自世界各地的研究专家围绕数据分析管理、数字经济和教育的最新科研成果&#xff0c;还为来自不同地区的代表们提供了面对面的交流意见和实验经验…

编程实例分享,宠物诊所电子处方怎么开,兽医电子处方模板电子版操作教程

编程实例分享&#xff0c;宠物诊所电子处方怎么开&#xff0c;兽医电子处方模板电子版操作教程 一、前言 以下操作教程以 佳易王兽医电子处方软件V16.0为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 1、在系统 设置里可以设置打印参数&#x…

【Docker】了解Docker Desktop桌面应用程序,TA是如何管理和运行Docker容器(2)

欢迎来到《小5讲堂》&#xff0c;大家好&#xff0c;我是全栈小5。 这是《Docker容器》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对…

【Spring】Spring事务和事务传播机制

文章目录 什么是事务事务的操作Spring 中事务的实现Spring编程式事务Spring 声明式事务 TransactionalTransactional作用Transactional 详解rollbackFor事务隔离级别Spring 事务隔离级别Spring 事务传播机制 什么是事务 事务&#xff08;Transaction&#xff09;是一个程序中一…

最新的 Ivanti SSRF 零日漏洞正在被大规模利用

Bleeping Computer 网站消息&#xff0c;安全研究员发现 Ivanti Connect Secure 和 Ivanti Policy Secure 服务器端请求伪造 (SSRF) 漏洞&#xff08;CVE-2024-21893 &#xff09;正在被多个威胁攻击者大规模利用。 2024 年 1 月 31 日&#xff0c;Ivanti 首次就网关 SAML 组件…

Vivado-IP核

Vivado-IP核 主程序 timescale 1ns / 1ps ////module ip_clk_wiz(input sys_clk,input sys_rst_n,output clk_out1,output clk_out2,output clk_out3,output clk_out4,output locked);clk_wiz_0 instance_name(// Clock out ports.clk_out1(clk_out1), // output clk_out…

java设计模式- 建造者模式

一 需求以及实现方式 1.1 需求描述 我们要创建一个表示汽车的复杂对象&#xff0c;汽车包含发动机、轮胎和座椅等部分。用传统方式创建&#xff0c;代码如下 1.2 传统实现方式 1.抽象类 public abstract class BuildCarAbstaract {//引擎public abstract void buildEng…

OpenGL 入门(十)— 光照系统

光照系统 前言平行光点光源衰减衰减的实现 聚光平滑/软化边缘 多光源 前言 介绍三种光源类型&#xff1a;平行光&#xff08;Directional Light&#xff09;、点光源&#xff08;Point Light&#xff09;、聚光灯(Spot Light)。 平行光(Directional Light)&#xff1a;只有一…

【力扣】整数反转,判断是否溢出的数学解法

整数反转原题地址 方法一&#xff1a;数学 反转整数 如何反转一个整数呢&#xff1f;考虑整数操作的3个技巧&#xff1a; xmod10可以取出x的最低位&#xff0c;如x123&#xff0c;xmod103。x/10可以去掉x的最低位&#xff0c;如x123&#xff0c;x/10&#xff0c;x12。xx*10…

C# CAD交互界面-自定义面板集(四)

运行环境 vs2022 c# cad2016 调试成功 一、程序说明 创建自定义面板集&#xff08;PaletteSet&#xff09;的C#命令方法实现。该方法名为CreatePalette&#xff0c;当在AutoCAD环境中调用此命令时&#xff0c;会执行以下操作&#xff1a; 获取AutoCAD主应用对象&#xff1…

docer compose部署simple-docker

简介 一个看似简陋但是功能足够用的docker管理工具 安装 创建目录 mkdir -p /opt/simple-docker cd /opt/simple-docker 创建并启动容器 编写docker-compose.yml文件,内容如下 version: 3 services: redis: image: redis:latest restart: always web: image: registry.cn-…

APP攻防-资产收集篇FridaHOOKXposed证书提取单向双向检验抓包mobsf

知识点 1、单向校验-XP框架&Frida&HOOK 2、双向校验-Frida&HOOK&导入证书 一、演示案例-APP-综合分析-Mobexler&MobSF识别 mobsf 移动安全框架 (MobSF) 是一种自动化的一体化移动应用程序 (Android/iOS/Windows) 渗透测试、恶意软件分析和安全评估框架…

Elasticsearch:BM25 及 使用 Elasticsearch 和 LangChain 的自查询检索器

本工作簿演示了 Elasticsearch 的自查询检索器将非结构化查询转换为结构化查询的示例&#xff0c;我们将其用于 BM25 示例。 在这个例子中&#xff1a; 我们将摄取 LangChain 之外的电影样本数据集自定义 ElasticsearchStore 中的检索策略以仅使用 BM25使用自查询检索将问题转…

Fate-Serving推理服务源码解读

https://fate-serving.readthedocs.io/en/develop/?queryguest 什么是Fate-Serving fate-serving是FATE的在线部分&#xff0c;在使用FATE进行联邦建模完成之后&#xff0c;可以使用fate-serving进行包括单笔预测、多笔预测以及多host预测在内的在线联合预测。 模型的初始化流…

用友U8 Cloud ReportDetailDataQuery SQL注入漏洞复现(QVD-2023-47860)

0x01 产品简介 用友U8 Cloud 提供企业级云ERP整体解决方案,全面支持多组织业务协同,实现企业互联网资源连接。 U8 Cloud 亦是亚太地区成长型企业最广泛采用的云解决方案。 0x02 漏洞概述 用友U8 cloud ReportDetailDataQuery 接口处存在SQL注入漏洞,攻击者未经授权可以访…