文心一言 VS 讯飞星火 VS chatgpt (194)-- 算法导论14.3 2题

news2025/2/23 17:45:17

二、用go语言,改写 INTERVAL-SEARCH 的代码,使得当所有区间都是开区间时,它也能正确地工作。

文心一言,代码正常运行:

在Go语言中,处理开区间(open intervals)时,我们需要特别注意区间的边界条件。开区间不包括其端点,因此在比较时不能使用等于(==)操作符。以下是一个使用Go语言实现的INTERVAL-SEARCH算法,该算法已修改为适用于开区间。

package main  
  
import (  
 "fmt"  
 "sort"  
)  
  
type Interval struct {  
 low, high float64  
}  
  
type ByLow []Interval  
  
func (a ByLow) Len() int           { return len(a) }  
func (a ByLow) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }  
func (a ByLow) Less(i, j int) bool { return a[i].low < a[j].low }  
  
func IntervalSearch(intervals []Interval, x float64) int {  
 n := len(intervals)  
 index := sort.Search(n, func(j int) bool {  
 return intervals[j].low > x // 注意这里改成了大于号,因为我们正在寻找第一个大于x的low  
 })  
  
 if index > 0 {  
 // 检查x是否在上一个区间的范围内(但不包括low和high)  
 if x > intervals[index-1].low && x < intervals[index-1].high {  
 return index - 1  
 }  
 }  
  
 return -1 // 如果x不在任何区间内,则返回-1  
}  
  
func main() {  
 intervals := []Interval{  
 {1, 3},  
 {5, 7},  
 {9, 11},  
 }  
  
 x := 2.5  
 index := IntervalSearch(intervals, x)  
 if index != -1 {  
 fmt.Printf("x is in interval %d\n", index)  
 } else {  
 fmt.Println("x is not in any interval")  
 }  
}

注意:

我已经修改了Less函数,以便按区间的下限进行排序。
在IntervalSearch函数中,我使用了sort.Search来找到第一个大于x的low值的索引。
然后,我检查了x是否在上一个区间的开区间范围内。
这段代码适用于开区间,但请注意,如果x正好等于某个区间的low或high值,它将被认为不在任何区间内,因为开区间不包括其端点。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

讯飞星火:

INTERVAL-SEARCH是一种在区间树中查找给定值所在的节点的算法。以下是改写后的代码:

type Node struct {
    max int
    left *Node
    right *Node
}

func IntervalSearch(root *Node, value int) *Node {
    if root == nil || root.max < value {
        return nil
    }
    if root.left != nil && root.left.max >= value {
        return IntervalSearch(root.left, value)
    } else {
        return root
    }
}

在这个代码中,我们首先检查根节点是否为空或者其最大值小于给定的值。如果是,则返回nil。然后,如果左子节点存在且其最大值大于或等于给定的值,我们就在左子树中递归搜索。否则,我们就返回当前节点。

在这里插入图片描述

360智脑:

以下是 Go 语言实现的区间树节点 INTERVAL-SEARCH 操作的伪代码,修改为支持开区间:

type IntervalTreeNode struct {
    LeftChild  *IntervalTreeNode 
    RightChild *IntervalTreeNode 
    Max        int 
    // 其他属性 
}
func IntervalSearch(node *IntervalTreeNode, low, high int) *IntervalTreeNode {
    // 如果节点为空,返回 nil 
    if node == nil {
        return nil 
    }
    // 如果当前节点的区间与查询区间没有交集,返回 nil 
    if (low > node.Max || high < node.Max) && (low < node.Max || high > node.Max) {
        return nil 
    }
    // 查询左子树 
    leftResult := IntervalSearch(node.LeftChild, low, high)
    // 查询右子树 
    rightResult := IntervalSearch(node.RightChild, low, high)
    // 如果左子树和右子树都有结果,返回值为右子树的结果 
    if leftResult != nil && rightResult != nil {
        return rightResult 
    }
    // 如果左子树有结果,返回左子树的结果 
    if leftResult != nil {
        return leftResult 
    }
    // 如果右子树有结果,返回右子树的结果 
    if rightResult != nil {
        return rightResult 
    }
    // 如果左右子树都没有结果,返回当前节点 
    return node 
}

注意,以上代码仅为示例,具体实现可能需要根据实际需求进行调整。

在这里插入图片描述

在这里插入图片描述

智谱清言,代码正常运行:

为了用Go语言改写INTERVAL-SEARCH算法以处理所有开区间的查询,我们需要对原始的算法进行一些调整。在一个标准的INTERVAL-SEARCH中,区间可以是开区间或闭区间,但当所有区间都是开区间时,我们需要确保算法能够正确识别出这种情况并作出相应的处理。

下面是一个简单的Go语言示例,它展示了一个能够处理开区间区间的INTERVAL-SEARCH算法的实现:

package main
import (
	"fmt"
)
// Interval 表示一个区间
type Interval struct {
	Start int
	End   int
}
// Search 返回第一个完全位于查询区间内的元素
func Search(intervals []Interval, query Interval) int {
	// 初始化结果为-1,表示没有找到符合条件的元素
	result := -1
	// 遍历所有区间
	for _, interval := range intervals {
		// 检查当前区间是否与查询区间有交集
		if query.Start > interval.End || query.End < interval.Start {
			// 如果没有交集,则跳过当前区间
			continue
		} else {
			// 如果查询区间完全位于当前区间内,则更新结果
			if query.Start >= interval.Start && query.End <= interval.End {
				result = interval.Start
				break
			}
		}
	}
	return result
}
func main() {
	// 定义一些开区间区间
	intervals := []Interval{
		{1, 3},
		{5, 7},
		{9, 11},
	}
	// 定义一个查询区间
	query := Interval{4, 10}
	// 执行搜索
	result := Search(intervals, query)
	// 输出结果
	fmt.Println("Found element at index:", result)
}

在这个例子中,Search 函数接收一个区间列表和一个查询区间。它遍历所有区间,检查每个区间与查询区间是否有交集。如果有交集,但它不完全包含在查询区间内,那么这个区间不会被选为结果。只有当查询区间完全位于某个区间内时,这个区间才会被考虑。

请注意,这个实现是基于数组索引的搜索,因此它假定区间是排序的。如果区间列表未排序,那么你可能需要先对它们进行排序,然后再应用这个搜索算法。此外,这个实现返回的是第一个满足条件的区间的起始索引,如果需要其他类型的结果(比如区间内的最大或最小值),则需要对代码进行相应的调整。

在这里插入图片描述

在这里插入图片描述

通义千问:

在区间树中,INTERVAL-SEARCH主要用于查找与给定区间有交集的所有区间。对于开区间,我们需要确保在比较区间时考虑它们是否相交时采用合适的条件。以下是针对开区间的INTERVAL-SEARCH函数的Go语言实现:

type Interval struct {
    Start, End float64 // 假设这些是浮点数,表示区间起点和终点(开区间)
}

type Node struct {
    Interval Interval
    Left, Right *Node
}

// 查找与给定开区间 i 有交集的所有区间
func intervalSearch(root *Node, i Interval) []*Interval {
    var result []*Interval
    searchHelper(root, i, &result)
    return result
}

// 辅助函数,递归查找
func searchHelper(node *Node, i Interval, result *[]*Interval) {
    if node == nil {
        return
    }

    // 检查当前节点的区间是否与目标区间有交集(对于开区间)
    if node.Interval.End > i.Start && node.Interval.Start < i.End {
        *result = append(*result, &node.Interval)

        // 继续在左子树和右子树中查找
        searchHelper(node.Left, i, result)
        searchHelper(node.Right, i, result)
    } else if node.Interval.Start >= i.End { // 当前节点的起点已经在目标区间的右侧,无需检查左子树
        searchHelper(node.Right, i, result)
    } else { // 当前节点的终点已经在目标区间的左侧,无需检查右子树
        searchHelper(node.Left, i, result)
    }
}

这个实现中,我们首先检查当前节点的区间是否与目标区间有交集,对于开区间而言,即判断是否存在 node.Interval.End > i.Start && node.Interval.Start < i.End 的情况。然后根据当前节点与目标区间的关系决定是否继续搜索左子树或右子树,以此减少不必要的搜索。最后将找到的有交集的区间添加到结果列表中。

在这里插入图片描述

在这里插入图片描述

天工:

在 Go 语言中,我们可以通过修改 INTERVAL-SEARCH 算法来支持开区间。具体来说,我们可以将每个区间的左端点设为区间的最小值减一,右端点设为区间的最大值加一。这样,我们就可以在搜索时使用闭区间,但仍然得到正确的结果。

以下是一个简单的伪代码实现:

type Interval struct {
    start int
    end   int
}

func (interval Interval) contains(x int) bool {
    return interval.start < x && x < interval.end
}

func (interval Interval) isOpen() bool {
    return interval.start == interval.end
}

func intervalSearch(intervals []Interval, target int) []Interval {
    result := make([]Interval, 0)

    for _, interval := range intervals {
        if interval.isOpen() && interval.contains(target) {
            result = append(result, interval)
        } else if !interval.isOpen() && interval.contains(target-1) {
            result = append(result, Interval{start: interval.start-1, end: interval.end})
        }
    }

    return result
}

在这个实现中,我们首先检查区间是否为开区间,并且目标值是否在该区间内。如果是,则将该区间添加到结果中。然后,我们检查区间是否为闭区间,并且目标值减一是否在该区间内。如果是,则创建一个新的区间,该区间以目标值减一为左端点,以原始区间的右端点为右端点,并将其添加到结果中。

需要注意的是,这个实现假设所有的区间都是非重叠的。如果存在重叠的区间,那么可能需要进行额外的处理。

在这里插入图片描述

在这里插入图片描述

灵小智,代码正常运行:

以下是使用Go语言改写INTERVAL-SEARCH代码的示例:
package main

import (
	"fmt"
)

type Interval struct {
	start int
	end   int
}

func IntervalSearch(intervals []Interval, x int) int {
	low := 0
	high := len(intervals) - 1
	for low <= high {
		mid := low + (high-low)/2
		if intervals[mid].start <= x && x <= intervals[mid].end {
			return mid
		} else if intervals[mid].start > x {
			high = mid - 1
		} else {
			low = mid + 1
		}
	}
	return -1
}

func main() {
	intervals := []Interval{
		{1, 3},
		{5, 8},
		{10, 15},
	}

	x := 7
	index := IntervalSearch(intervals, x)
	if index != -1 {
		fmt.Printf("%d is in interval [%d, %d]\n", x, intervals[index].start, intervals[index].end)
	} else {
		fmt.Println("Interval not found")
	}
}

在这个示例中,我们定义了一个Interval结构体来表示区间。IntervalSearch函数接收一个由Interval结构体组成的切片以及要查找的值x作为参数,然后使用二分查找的算法来搜索x在哪个区间中。

main函数中,我们创建了一个包含三个开区间的区间集合,并使用IntervalSearch函数来查找x=7所处的区间。如果找到了相应的区间,则输出区间的起始和结束值;否则,输出"Interval not found"。

请注意,这只是一个示例实现,你可以根据具体的需求对代码进行修改和优化。

在这里插入图片描述

在这里插入图片描述

chatgpt,代码正常运行:

下面是使用Go语言改写的INTERVAL-SEARCH代码,支持处理开区间的情况:

package main

import "fmt"

type Interval struct {
	Start int // 区间起点
	End   int // 区间终点
}

func INTERVAL_SEARCH(intervals []Interval, x Interval) (result *Interval) {
	// 查找重叠的区间并返回
	for _, interval := range intervals {
		if interval.Start <= x.End && interval.End >= x.Start {
			return &interval
		}
	}
	return nil // 没有找到重叠的区间
}

func main() {
	intervals := []Interval{
		{1, 3},
		{5, 8},
		{10, 12},
    }

	x := Interval{2, 4}
	result := INTERVAL_SEARCH(intervals, x)
	
	if result != nil {
	    fmt.Println("找到重叠区间:", *result)
    } else {
        fmt.Println("没有找到重叠区间")
    }
}

在INTERVAL_SEARCH函数中,我们通过遍历输入的intervals切片,并逐个与待查询的区间x进行比较。如果存在重叠部分,则返回该重叠区间的指针;否则,返回nil表示没有找到重叠区间。

请注意,在处理开区间时,我们将条件改为interval.Start <= x.End && interval.End >= x.Start,确保正确地判断了是否存在重叠。

以上示例代码可以根据具体需求进行修改和扩展。

在这里插入图片描述

在这里插入图片描述

kimi:

在区间树(Interval Tree)中,INTERVAL-SEARCH 操作用于查找与给定区间重叠的所有区间。当所有区间都是开区间(即区间不包含端点)时,我们需要稍微调整搜索逻辑,以确保正确处理这种情况。以下是 Go 语言中 INTERVAL-SEARCH 操作的改写版本,它能够处理开区间:

package main

import (
    "fmt"
)

type IntervalNode struct {
    interval [2]int // [left, right]
    value    int
    left     *IntervalNode
    right    *IntervalNode
}

func INTERVAL_SEARCH(root *IntervalNode, target [2]int) []*IntervalNode {
    var result []*IntervalNode

    // 辅助函数,递归搜索区间树
    var search func(node *IntervalNode, target [2]int)
    search = func(node *IntervalNode, target [2]int) {
        if node == nil {
            return
        }

        // 如果当前节点的区间与目标区间有重叠,添加到结果集
        if node.interval[0] < target[1] && node.interval[1] > target[0] {
            result = append(result, node)
        }

        // 递归搜索左子树
        if node.left != nil && node.left.interval[1] >= target[0] {
            search(node.left, target)
        }

        // 递归搜索右子树
        if node.right != nil && node.right.interval[0] <= target[1] {
            search(node.right, target)
        }
    }

    search(root, target)
    return result
}

func main() {
    // 假设我们有一个区间树的根节点
    root := &IntervalNode{
        interval: [2]int{1, 5},
        value:    1,
        left:     &IntervalNode{interval: [2]int{2, 3}, value: 2},
        right:    &IntervalNode{interval: [2]int{4, 6}, value: 3},
    }

    // 搜索开区间 [3, 5)
    target := [2]int{3, 5}
    intervals := INTERVAL_SEARCH(root, target)

    fmt.Println("Overlapping intervals:", intervals)
}

在这个改写的版本中,我们定义了一个辅助函数 search 来递归地搜索区间树。在搜索过程中,我们检查当前节点的区间是否与目标区间有重叠。对于开区间,我们使用 <> 而不是 <=>= 来比较区间的端点。这样,只有当当前节点的区间严格包含在目标区间内时,我们才会将其添加到结果集中。

请注意,这个实现假设区间树的节点结构体 IntervalNode 包含了区间和值。在实际的 Go 代码中,你可能需要根据具体的区间树实现来调整这个代码。

在这里插入图片描述

在这里插入图片描述

混元,代码正常运行:

以下是使用 Go 语言实现的 INTERVAL-SEARCH 函数,当所有区间都是开区间时,它也能正确地工作:

package main

import "fmt"

type Interval struct {
	start int
	end   int
}

type Node struct {
	interval  Interval
	maxEnd    int
	left      *Node
	right     *Node
	parent    *Node
}

func newNode(interval Interval) *Node {
	return &Node{
		interval: interval,
		maxEnd:   interval.end,
	}
}

func (n *Node) updateMaxEnd() {
	n.maxEnd = max(n.left.maxEnd, n.right.maxEnd)
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

func intervalSearch(root *Node, target int) *Node {
	current := root
	for current != nil {
		if current.interval.start <= target && target <= current.interval.end {
			return current
		}
		if target< current.interval.start {
			current = current.left
		} else {
			current = current.right
		}
	}
	return nil
}

func main() {
	root := newNode(Interval{start: 1, end: 3})
	root.left = newNode(Interval{start: 2, end: 4})
	root.right = newNode(Interval{start: 4, end: 6})
	root.left.parent = root
	root.right.parent = root

	target := 2
	result := intervalSearch(root, target)
	if result != nil {
		fmt.Printf("Found interval: %d-%d\n", result.interval.start, result.interval.end)
	} else {
		fmt.Println("No interval found")
	}
}

这个代码实现了一个简单的区间树,其中每个区间都是开区间。INTERVAL-SEARCH 函数在这个区间树中查找给定目标值的区间。如果找到了匹配的区间,它将返回该区间的节点;否则,它将返回 nil。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1432943.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux的库文件

概述&#xff1a; 库文件一般就是编译好的二进制文件&#xff0c;用于在链接阶段同目标代码一块生成可执行文件&#xff0c;或者运行可执行文件的时候被加载&#xff0c;以遍调用库文件中的某段代码。 动态链接都是索引的.so文件&#xff0c;静态链接都是压缩打包的.a文件。 …

配置visualsvn提交后自动邮件通知

参考&#xff1a; https://blog.csdn.net/wiker_yong/article/details/10334967 # -*- coding: utf-8 -*- import sys import os import smtplib from email.mime.text import MIMEText from email.header import Headermail_host smtp.163.com #发送邮件的smtp地址 mail_us…

【RPA】什么是RPA

一、什么是RPA? RPA&#xff0c;全称机器人流程自动化&#xff0c;是一种利用机器人技术实现工作信息与业务交互自动化的过程。它能够按照预先设计的流程&#xff0c;高效地处理大量的工作信息与业务交互&#xff0c;极大地节约了人工成本。如今&#xff0c;RPA已成为智能化软…

26.云原生ArgoCD高级之ApplicationSet

云原生专栏大纲 文章目录 ApplicationSet介绍ApplicationSet 特性ApplicationSet 安装ApplicationSet 工作原理ApplicationSet 生成器列表类型生成器集群生成器基础使用方法Label Selector 指定集群Values 字段传递额外的参数 git生成器git目录生成参数排除目录git文件生成器矩…

zabbix server/agent源码编译成rpm包(通用版-小白教程)

前言 工作环境需要用到很多信创的操作系统&#xff0c;zabbix agent2的官方没有现成的包可用&#xff0c;网上巴拉了一下找到zabbix agent2通用版编译成rpm包的方法 思路&#xff1a;假如当你有一批ky10_x86的机器需要配套的zabbix agent的rpm包&#xff0c;那就找一台ky10_x…

6个国内可用的chat大模型

文心一言 - 一款适合中国人使用的AI智能助理&#xff0c;能够帮助用户进行对话、生成内容等工作&#xff0c;提高工作效率和创作水平 文心一言 文心一言 App 是一款适合中国人的 AI 智能助理&#xff0c;它的功能点主要包括&#xff1a; 工作生活助理&#xff1a;该应用通过简…

鉴权失败原因

在技术领域&#xff0c;鉴权失败是指一个系统或应用程序中的身份验证或权限验证过程失败。当用户试图访问受限资源或执行受限操作时&#xff0c;系统会进行鉴权过程来确认用户是否具有足够的权限。如果鉴权过程失败&#xff0c;则表示用户无法获得所需的访问权限。 鉴权失败可…

Java代码实现基数排序算法(附带源码)

基数排序是一种非比较型整数排序算法&#xff0c;其原理是将整数按位数切割成不同的数字&#xff0c;然后按每个位数分别比较。由于整数也可以表达字符串&#xff08;比如名字或日期&#xff09;和特定格式的浮点数&#xff0c;所以基数排序也不是只能使用于整数。 1. 基数排序…

基于Springboot的兼职网(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的兼职网&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0…

ubuntu离线安装k8s

目录 一、前期准备 二、安装前配置 三、安装docker 四、安装cri-dockerd 五、部署k8s master节点 六、整合kubectl与cri-dockerd 七、网络等插件安装 八、常见问题及解决方法 一、前期准备 ①ubuntu系统 本地已安装ubuntu系统&#xff0c;lsb_release -a命令查看版本信…

HarmonyOS应用/服务发布:打造多设备生态的关键一步

目前 前言HarmonyOS 应用/服务发布的重要性使用HarmonyOS 构建跨设备的应用生态前期准备工作简述发布流程生成签名文件配置签名信息编译构建.app文件上架.app文件到AGC结束语 前言 随着智能设备的快速普及和多样化&#xff0c;以及编程语言的迅猛发展&#xff0c;构建一个无缝…

打印文件pdf怎么转换成word文档?pdf转换工具推荐

有时候我们可能需要重用PDF文件中的文本内容&#xff0c;比如引用某些段落、复制粘贴特定文字或提取数据&#xff0c;通过将pdf文件转换成word&#xff0c;可以轻松地提取和重用其中的文本&#xff0c;节省时间和努力&#xff0c;那么pdf怎么转word呢&#xff1f;可以试试本文推…

读论文:DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

DiffBIR 发表于2023年的ICCV&#xff0c;是一种基于生成扩散先验的盲图像恢复模型。它通过两个阶段的处理来去除图像的退化&#xff0c;并细化图像的细节。DiffBIR 的优势在于提供高质量的图像恢复结果&#xff0c;并且具有灵活的参数设置&#xff0c;可以在保真度和质量之间进…

SpringBoot实战第二天

今日战报 继续完善用户相关接口开发&#xff1a; 1.完成获取用户信息功能 2.完成更新用户信息功能 3.完成更新用户头像功能 4.完成更新用户密码功能 获取用户信息 接口文档 如接口文档所示&#xff0c;我们需要做的就是从header中的Authorization中读取token&#xff0c;解码…

CSS 闪电按钮效果

<template><view class="const"><div class="voltage-button"><button>闪电按钮</button><svg version="1.1" xmlns="http://www.w3.org/2000/svg" x="0px" y="0px" viewBox=&q…

PyTorch 2.2 中文官方教程(十七)

&#xff08;Beta&#xff09;使用缩放点积注意力&#xff08;SDPA&#xff09;实现高性能 Transformer 原文&#xff1a;pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 注意 点击这…

Flutter开发iOS问题记录

一、版本适配问题 warning: The iOS deployment target ‘IPHONEOS_DEPLOYMENT_TARGET’ is set to 10.0, but the range of supported deployment target versions is 12.0 to 17.2.99. (in target ‘Protobuf’ from project ‘Pods’) 可以通过在podfile中配置解决。 pos…

小埋的解密游戏的题解

题目描述 小埋最近在玩一个解密游戏&#xff0c;这个游戏的解密方法是这样的&#xff0c;这个游戏会给你提供 个数,让我们求出这 个数里面&#xff0c;有多少个连续的数的平均数大于某个给定的数 。这个数可能会很大&#xff0c;所以我们要输出这个数对 的取模结果。现在小…

Java并发之synchronized详解

☆* o(≧▽≦)o *☆嗨~我是小奥&#x1f379; &#x1f4c4;&#x1f4c4;&#x1f4c4;个人博客&#xff1a;小奥的博客 &#x1f4c4;&#x1f4c4;&#x1f4c4;CSDN&#xff1a;个人CSDN &#x1f4d9;&#x1f4d9;&#x1f4d9;Github&#xff1a;传送门 &#x1f4c5;&a…

使用Java实现基于HTTP的分布式系统:让你的应用“四处开花”

在数字世界里&#xff0c;分布式系统就像是一个大家庭&#xff0c;每个成员&#xff08;即节点&#xff09;都有自己的任务和职责&#xff0c;共同维护整个家庭的运转。如果你想使用Java来实现这样一个大家庭&#xff0c;让应用在各个节点上“四处开花”&#xff0c;那就需要借…