读论文:DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

news2024/11/27 20:36:52

         DiffBIR 发表于2023年的ICCV,是一种基于生成扩散先验的盲图像恢复模型。它通过两个阶段的处理来去除图像的退化,并细化图像的细节。DiffBIR 的优势在于提供高质量的图像恢复结果,并且具有灵活的参数设置,可以在保真度和质量之间进行权衡。网络结构图如下所示:

  • 优化的痛点问题:
  • 平衡扩散模型内在具有的真实感先验以及图像复原任务所需要的保真度要求。

  • two stage 的网络总体架构
  • stage one:去除退化的预训练模型
  • SwinIR 的结构(8个残差Swin Transformer block,每个RSTB包含6个Swin Transformer Layers (STL));
  • 处理多种任务:模糊,噪声,压缩伪影和低分辨率(二阶退化采用经典退化模型:模糊-调整大小-噪声过程两次)
  • 3 × 3卷积层进行浅层特征提取;深度特征提取采用多个残差Transformer块(低分辨率空间)。
  • stage two:利用生成先验进行图像重建
  • Stable Diffusion 的方法(Stable Diffusion 2.1-base 3,并进行微调);
  • 扩散和去噪过程在潜在空间中进行(类似LDM);
  • LAControlNet :使用孪生encoder来控制decoder生成图像的保真度。在微调自己的模型过程中,就是微调 LAControlNet 的参数(和 ControlNet 一样的0卷积策略)。

  • 颜色偏移问题
  • ControlNet使用从头开始训练的附加条件网络来编码条件信息;LAControlNet训练有素的VAE编码器能够将条件图像投影到与潜在变量相同的表示空间中:该策略显著减轻了潜在扩散模型中内部知识与外部条件信息对齐的负担。在实验中,直接使用ControlNet进行图像重建会导致严重的颜色偏移。

  • 保真度-真实性权衡引导
  • 在扩散模型的公式中,通过移项变换是可以直接由第 t 时间步的隐状态 zt 直接得到原始的干净图像 z0 的估计的,如下式:
  • 将基于潜在的损失D_latent定义为潜在图像引导与估计的干净潜在之间的L2距离,如下式:

  • 上述引导可以迭代地强制潜在特征之间的空间对齐和颜色一致性,并引导生成的潜在保留参考潜在的内容,实现从生成的输出到更平滑的结果的过渡。

  • stage one 中的数据退化细节
  • 退化模型在某一阶段包括三个操作:模糊、调整大小和噪声。模糊。我们利用各向同性高斯模糊或各向异性高斯模糊具有相同的概率。模糊核的大小遵循7 ~ 21的均匀分布,第一次退化过程的模糊σ均匀采样在0.2 ~ 3之间,第二次退化过程的模糊σ均匀采样在0.2 ~ 1.5之间。调整大小。我们考虑了多种调整算法,包括面积调整、双线性插值和双三次调整。对于第一次降解过程,调整尺寸的比例因子遵循0.15至1.5的均匀分布,对于第二次降解过程,比例因子遵循0.3至1.2的均匀分布。噪音。我们结合了高斯噪声、泊松噪声和JPEG压缩噪声。高斯噪声的尺度在第一次退化过程中均匀采样在1 ~ 30之间,在第二次退化过程中均匀采样在1 ~ 25之间。在第一次和第二次退化过程中,泊松噪声的尺度分别在0.05 ~ 3和0.05 ~ 2.5之间随机采样。JPEG压缩的质量遵循从30到95的均匀分布。此外,我们还结合了盲人脸恢复中所采用的退化设置。具体来说,我们考虑一个大的降采样范围[1,12],和一个大的模糊核范围,其sigma在[0.1,12]以内。这样可以训练生成模块在大范围内弥补信息丢失。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1432921.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot实战第二天

今日战报 继续完善用户相关接口开发: 1.完成获取用户信息功能 2.完成更新用户信息功能 3.完成更新用户头像功能 4.完成更新用户密码功能 获取用户信息 接口文档 如接口文档所示,我们需要做的就是从header中的Authorization中读取token,解码…

CSS 闪电按钮效果

<template><view class="const"><div class="voltage-button"><button>闪电按钮</button><svg version="1.1" xmlns="http://www.w3.org/2000/svg" x="0px" y="0px" viewBox=&q…

PyTorch 2.2 中文官方教程(十七)

&#xff08;Beta&#xff09;使用缩放点积注意力&#xff08;SDPA&#xff09;实现高性能 Transformer 原文&#xff1a;pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 注意 点击这…

Flutter开发iOS问题记录

一、版本适配问题 warning: The iOS deployment target ‘IPHONEOS_DEPLOYMENT_TARGET’ is set to 10.0, but the range of supported deployment target versions is 12.0 to 17.2.99. (in target ‘Protobuf’ from project ‘Pods’) 可以通过在podfile中配置解决。 pos…

小埋的解密游戏的题解

题目描述 小埋最近在玩一个解密游戏&#xff0c;这个游戏的解密方法是这样的&#xff0c;这个游戏会给你提供 个数,让我们求出这 个数里面&#xff0c;有多少个连续的数的平均数大于某个给定的数 。这个数可能会很大&#xff0c;所以我们要输出这个数对 的取模结果。现在小…

Java并发之synchronized详解

☆* o(≧▽≦)o *☆嗨~我是小奥&#x1f379; &#x1f4c4;&#x1f4c4;&#x1f4c4;个人博客&#xff1a;小奥的博客 &#x1f4c4;&#x1f4c4;&#x1f4c4;CSDN&#xff1a;个人CSDN &#x1f4d9;&#x1f4d9;&#x1f4d9;Github&#xff1a;传送门 &#x1f4c5;&a…

使用Java实现基于HTTP的分布式系统:让你的应用“四处开花”

在数字世界里&#xff0c;分布式系统就像是一个大家庭&#xff0c;每个成员&#xff08;即节点&#xff09;都有自己的任务和职责&#xff0c;共同维护整个家庭的运转。如果你想使用Java来实现这样一个大家庭&#xff0c;让应用在各个节点上“四处开花”&#xff0c;那就需要借…

ensp实验合集(二)

实验6 VLAN划分....................................................................... - 30 - 实验7 路由器调试及常用命令使用........................................ - 42 - 实验8 配置静态路由器............................................................…

DevOps落地笔记-13|自动化测试:提高测试效率的不二之选

上一课时主要介绍了通过 API 管理平台来管理企业内部的 API。持续集成是能够保证软件处于可工作状态的实践&#xff0c;但实施持续集成有一个必不可少的步骤——测试。只有尽可能全面的测试覆盖&#xff0c;才能降低软件出错的概率。但是&#xff0c;大多数企业里还是基于人工来…

ChatGPT之搭建API代理服务

简介 一行Docker命令部署的 OpenAI/GPT API代理&#xff0c;支持SSE流式返回、腾讯云函数 。 项目地址&#xff1a;https://github.com/easychen/openai-api-proxy 这个项目可以自行搭建 OpenAI API 代理服务器工具&#xff0c;该项目是代理的服务器端&#xff0c;不是客户端。…

SpringMVC-组件解析

一、引子 我们在上一篇文章Spring MVC-基本概念中&#xff0c;为读者解释了如何使用SpringMVC框架&#xff0c;将承接客户端请求的工作从原生的Servlet转移到我们熟知的Controller中。那么我们不禁会好奇&#xff0c;SpringMVC框架到底做了什么&#xff0c;是怎么把请求分发给…

python爬虫代码示例:爬取京东详情页图片【京东API接口】

一、Requests请求示例【京东API接口】 爬虫爬取网页内容首先要获取网页的内容&#xff0c;通过requests库进行获取。 安装 pip install requests 示例代码 import requests url "http://store.weigou365.cn"res requests.get(url)res.text 执行效果如下&#x…

08. 【Linux教程】CentOS 目录介绍

CentOS 目录介绍 前面小节介绍了如何安装并登录连接 CentOS 系统&#xff0c;本小节围绕 CentOS 系统的目录&#xff0c;介绍其各个目录的作用&#xff0c;方便读者以后在工作中很好地将项目和软件归类存储&#xff0c;熟悉 CentOS 系统各个目录的功能介绍&#xff0c;有助于加…

javaEE - 20( 18000字 Tomcat 和 HTTP 协议入门 -1)

一&#xff1a; HTTP 协议 1.1. HTTP 是什么 HTTP (全称为 “超文本传输协议”) 是一种应用非常广泛的 应用层协议. HTTP 诞生与1991年. 目前已经发展为最主流使用的一种应用层协议. 最新的 HTTP 3 版本也正在完善中, 目前 Google / Facebook 等公司的产品已经支持了. HTT…

【JavaScript 漫游】【007】数据类型转换

文章简介 本文为【JavaScript 漫游】专栏的第 007 篇文章&#xff0c;对 JS 数据类型转化语法进行了简记。 数据类型的转换指的是将 JS 的某一数据类型的值转换为 JS 的某一原始数据类型的值&#xff0c;也就是 number、string 和 boolean。 Number 方法强制转换为 number 类…

Python||五城P.M.2.5数据分析与可视化_使用复式柱状图分析各个城市的P.M.2.5月度差异情况(中)

目录 4.上海市空气质量月度差异 5.沈阳市空气质量月度差异 五城P.M.2.5数据分析与可视化_使用复式柱状图分析各个城市的P.M.2.5月度差异情况 4.上海市空气质量月度差异 import numpy as np import pandas as pd import matplotlib.pyplot as plt#读入文件 sh pd.read_csv(./S…

arping交叉编译

arping命令依赖libpcap和libnet&#xff0c;需要先交叉编译这两个库。 1.交叉编译libpcap 下载libpcap源文件&#xff0c;从github上克隆: git clone https://github.com/the-tcpdump-group/libpcap.git source交叉编译环境 # environment-setup是本机的交叉编译环境, 里面…

12. onnx转为rknn测试时有很多重叠框的修改(python)

我们下载rknn-toolkit2-master后并进行前面的处理后&#xff0c;进入到rknn-toolkit2-master\examples\onnx\yolov5文件夹&#xff0c;里面有个test.py文件&#xff0c;打开该文件&#xff0c;其代码如下&#xff1a; # -*- coding: utf-8 -*- # coding:utf-8import os import…

解决问题(Tensorflow框架):ImportError: cannot import name ‘merge‘ from ‘keras.layers‘

看了一圈解决方案&#xff0c;没有找到跟我这个相关的 这就是版本兼容性问题 说句最简单的&#xff0c;针对我这个问题 直接把merge删除点就完事了&#xff0c;因为新版的tensorflow框架这个里面不包含merge&#xff0c;所以直接删掉问题就解决了

SD-WAN的安全性体现在哪里?

SD-WAN技术以其高度灵活、网络自动配置和低成本等优势&#xff0c;将多个物理WAN链接整合为一个逻辑网络&#xff0c;推动网络从“连通驱动”向“服务驱动”导向的转变。同时&#xff0c;企业在追求高效网络时&#xff0c;SD-WAN的安全性也成为一个重要的考量因素。 SD-WAN采用…