回归预测 | Matlab实现CPO-CNN-LSTM-Attention冠豪猪优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)

news2025/1/12 3:47:01

回归预测 | Matlab实现CPO-CNN-LSTM-Attention冠豪猪优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)

目录

    • 回归预测 | Matlab实现CPO-CNN-LSTM-Attention冠豪猪优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现CPO-CNN-LSTM-Attention冠豪猪优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE多指标评价;
5.冠豪猪优化学习率,隐藏层节点,正则化系数;

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式资源处直接下载:Matlab实现CPO-CNN-LSTM-Attention冠豪猪优化卷积长短期记忆神经网络注意力机制多变量回归预测(SE注意力机制)。
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);

[Best_score,Best_pos,curve]=CPO(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数
 
%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图
    reluLayer("Name", "relu_1")                                          
tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
       fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1431005.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2024 AI 前端:回首展望,光芒未至,破晓之前!

前言 回望 2023 年,ChatGPT 的突然爆火,让 AI 无疑成为最为值得注目的新兴领域之一,我们也一起见证了生成式 AI 的寒武纪大爆发。这一年来,国内外的生成式 AI 、大模型和相关产品以令人眼花缭乱的速度更新迭代,新的创业…

day29 M端事件

M端事件 移动端也有自己独特的地方,比如触屏事件touch(也称触摸事件)touch对象代表一个触摸点。触摸点可能是一根手指,也可能是一根触摸笔。触屏事件可响应用户手指(或触控笔)对屏幕或触控板操作。常见的触…

如何从零创建一个机器人模型

1.URDF建模原理 2.机械臂URDF建模 3.三维模型导出URDF 第一步:下载三维模型,并给每个关节设置旋转轴(基准轴) 第二部:下载 SolidWorks to URDF Exporter 插件 网址:sw_urdf_exporter - ROS Wiki 第三步…

Win10系统搭建个人hMailServer邮件服务结合内网穿透远程发邮件

文章目录 前言1. 安装hMailServer2. 设置hMailServer3. 客户端安装添加账号4. 测试发送邮件5. 安装cpolar6. 创建公网地址7. 测试远程发送邮件8. 固定连接公网地址9. 测试固定远程地址发送邮件 前言 hMailServer 是一个邮件服务器,通过它我们可以搭建自己的邮件服务,通过cpola…

Python tkinter (14) —— 按键事件

本文主要介绍Python tkinter 几种按键事件及其示例。 目录 按键事件 响应所有按键事件 窗体绑定事件 响应特殊按键事件 指定按键事件 组合按键事件 总结 tkinter系列文章 python tkinter窗口简单实现 Python tkinter (1) —— Label标签 Python tkinter (2) —— But…

IP 了解

参考:5.1 IP 基础知识全家桶 | 小林coding IP 在 TCP/IP 参考模型中处于第三层,也就是网络层。 网络层的主要作用是:实现主机与主机之间的通信,也叫点对点(end to end)通信。 什么是 IP 地址&#xff1f…

大创项目推荐 题目:基于深度学习的人脸表情识别 - 卷积神经网络 大创项目推荐 代码

文章目录 0 简介1 项目说明2 数据集介绍:3 思路分析及代码实现3.1 数据可视化3.2 数据分离3.3 数据可视化3.4 在pytorch下创建数据集3.4.1 创建data-label对照表3.4.2 重写Dataset类3.4.3 数据集的使用 4 网络模型搭建4.1 训练模型4.2 模型的保存与加载 5 相关源码6…

apipost 简单的性能压测总结

1、简单的使用机型牌评估 1)jdk默认256M给100用,推荐给1000人同时用JVM 堆栈建议2G~4G(目前定了机型4核8G内存 2T磁盘做radio0存储); 2)数据库配置文件写了占了2G内存(my.cnf文件&#xff09…

2024/1/30 dfs与bfs

想要了解dfs与bfs,就得了解队列和栈。 一、栈与队列 1.栈 栈说白了就是先入后出。把栈类比为一个容器。只有一个口,所以如果我们想要取出最底层也就是最先放入的元素,只能最后取出它。 栈基础操作有如下几种: push 放入pop 拿…

车载以太网:PHY(物理层)介绍

0 工具准备 TJA1101B芯片手册 TJA1101B automotive Ethernet PHY手册 IEEE802.3-2018.pdf 1 车载以太网PHY(物理层)介绍 常见的普通以太网分为10BASE-2、10/100BASE-TX和1000BASE-T,一般都使用RJ45接口,对于1000BASE-T来说&#…

LabVIEW风力发电机在线监测

LabVIEW风力发电机在线监测 随着可再生能源的发展,风力发电成为越来越重要的能源形式。设计了一个基于控制器局域网(CAN)总线和LabVIEW的风力发电机在线监测系统,实现风力发电机的实时监控和故障诊断,以提高风力发电的…

Python使用zdppy_es国产框架操作Elasticsearch实现增删改查

Python使用zdppy_es国产框架操作Elasticsearch实现增删改查 本套教程配套有录播课程和私教课程,欢迎私信我。 Docker部署ElasticSearch7 创建基本容器 docker run -itd --name elasticsearch -p 9200:9200 -e "discovery.type=single-node" -e ES_JAVA_OPTS=&quo…

上位机图像处理和嵌入式模块部署(linux开发板的选择)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 很多图像算法是通过上位机来完成的,比如说工业视觉当中的halcon,一般都是要运行在windows平台上面,并且需要高性…

Blender教程(基础)-面的填充-13

一、准备 新建一个立方,删除其中一个面。 二、三角面填充 首先是编辑模式下,选择需要填充的所有边。 鼠标右键弹出填充 填充完是以三角面的形式填充的 编辑模式下,面选择模式,选择刚才填充的两个三角面,然后右键…

谈谈BlueStore

目录 未完待续前言组成前期准备工作基础概念对象PextentextentBlobNode 线程事务磁盘的抽象与分配位图法分层位图 上电流程写流程读流程参考资料 未完待续 前言 BlueStore是什么? Ceph是一个统一的分布式存储系统。BlueStore是Ceph的存储引擎。 它的作用是什么&am…

STM32标准库——(10)ADC模数转换器

1.ADC简介 12位ADC是一种逐次逼近型模拟数字转换器。它有多达18个通道,可测量16个外部和2个内部信号源。各通道的A/D转换可以单次、连续、扫描或间断模式执行。ADC的结果可以左对齐或右对齐方式存储在16位数据寄存器中。 模拟看门狗特性允许应用程序检测输入电压是…

[机器学习]LFM梯度下降算法

一.LFM梯度下降算法 2.代码实现 # 0. 引入依赖 import numpy as np import pandas as pd# 1. 数据准备 # 评分矩阵R R np.array([[4,0,2,0,1],[0,2,3,0,0],[1,0,2,4,0],[5,0,0,3,1],[0,0,1,5,1],[0,3,2,4,1],]) # 0分表示还未进行评价 # 二维数组小技巧:取行数R.s…

云端录制直播流视频,上传云盘

前言 哪一天我心血来潮,想把我儿子学校的摄像头视频流录制下来,并保存到云盘上,这样我就可以在有空的时候看看我儿子在学校干嘛。想到么就干,当时花了一些时间开发了一个后端服务,通过数据库配置录制参数,…

JavaScript鼠标拖放(Drag and Drop)

🧑‍🎓 个人主页:《爱蹦跶的大A阿》 🔥当前正在更新专栏:《VUE》 、《JavaScript保姆级教程》、《krpano》、《krpano中文文档》 ​ ​ ✨ 前言 拖放是现代界面不可或缺的交互方式之一。本文将介绍如何用JavaScript…