深度学习:数据驱动的人工智能革命

news2024/11/16 12:08:35

文章目录

  • 每日一句正能量
  • 前言
  • 什么是深度学习
  • 推动AI发展不同阶段的“三大驱动 ”
    • 1、技术驱动:算法和计算力是主要驱动力
    • 2、计算力的三驾马车:芯片、超级计算机、云计算
    • 3、数据驱动:描绘个性化画像;
  • 后记

每日一句正能量

一般青年的任务,尤其是共产主义青年团及其他一切组织的任务,可以用一句话来表示,就是要学习。

前言

深度学习的崛起标志着人工智能领域迈出了重要的一步,同时也为各行各业带来了巨大的机遇和挑战。通过模拟人类大脑的学习过程,深度学习能够自动提取特征、识别模式,并在多个领域实现了突破性的进展。特别是在自然语言处理、计算机视觉、语音识别和机器翻译等方面,深度学习已经成为重要的工具和技术。随着算法和模型的不断改进,计算能力的提升以及数据量的增长,深度学习的应用范围将会进一步扩大,对各行各业产生更为深远的影响。因此,了解和掌握深度学习的原理和应用成为了当今科技发展的重要课题。

什么是深度学习

深度学习是机器学习中的一个重要分支,它是一种复杂且强大的机器学习算法,旨在模仿人脑的工作机制,从而在多个领域如语音识别、图像识别、自然语言处理等取得显著效果。深度学习的核心在于人工神经网络(ANN),这是一种模仿生物神经系统结构的计算模型。

  • 人工神经网络:深度学习依赖于人工神经网络,这些网络可以有多层结构,每一层都会接收输入并生成不同的输出。这种层级化的处理方式允许网络捕捉和学习数据的复杂结构和模式。

  • 深层结构:深度学习中的“深度”通常指代神经网络中的隐藏层数量。这些隐藏层有助于网络学习更高层次的抽象信息,从而提高其识别能力和泛化能力。

  • 非线性激活:在深度学习中,神经元通过非线性激活函数来转换输入信号,这样可以在网络中传递信息的路径上增加多样性。

  • 特征学习与提取:深度学习采用非监督式或半监督式的特征学习和分层特征提取高效算法,这些方法允许网络自动从原始数据中发现和学习有用的特征。

  • 广泛应用:深度学习不仅限于机器学习,它在搜索技术、数据挖掘、机器翻译等多个领域都有所应用,并且已经在语音、图像识别等领域取得了超越传统技术的成果。

综上所述

深度学习是机器学习的一个子集,它利用人工神经网络的多层结构来模仿人脑的工作机制,通过对数据进行高层次的特征学习,实现了对复杂模式的有效识别和处理。

推动AI发展不同阶段的“三大驱动 ”

在AI发展的不同阶段,驱动力各有侧重,我们可以将AI的发展划分为三个阶段:

  • 技术驱动阶段
  • 数据驱动阶段
  • 场景驱动阶段。
    在这里插入图片描述

1、技术驱动:算法和计算力是主要驱动力

技术驱动阶段集中诞生了基础理论、基本规则和基本开发工具。在此阶段,算法和计算力对AI的发展起到主要推动作用。现在主流应用的基于多层网络神经的深度算法,一方面不断加强从海量数据库中自行归纳物体特征的能力,一方面不断加强对新事物多层特征提取、描述和还原的能力。对算法来说,归纳和演绎同样重要,最终目的是提高识别效率。最新ImageNet测试结果显示,AI错误率低达3.5%,而人类对同一数据库识别错误率在5.1%理想情况下,计算机图像识别能力已超越人类。
在这里插入图片描述

2、计算力的三驾马车:芯片、超级计算机、云计算

提高识别效率除依靠算法之外,也离不开计算力的支持。计算力可以分三个维度展开:芯片、超级计算机、云计算。

  1. 芯片:人工智能领域作为一个数据密集的领域,传统的数据处理技术难以满足高强度并行数据的处理需求。为解决此问题,继CPU之后,相继出现了GPU、NPU、FPGA、DSP等“AI”芯片。1999 年,Nvidia公司发布了全球首款图片处理芯片GPU;2016年,寒武纪发布了全球首款深度学习专用处理器芯片NPU,芯片的更迭、进步可从根本上提高计算性能
    在这里插入图片描述
  2. 超级计算机:其基本组成组件与个人电脑的概念无太大差异,但规格与性能则强大许多,是一种超大型电子计算机。我国自主超级计算机“神威·∙太湖之光”,其处理器为众核CPU“申威26010”,整台“神威·∙太湖之光”共包含40960块处理器;打败李世石的AlphaGo共包含1202个CPU和176个GPU;打败柯洁的升级版AlphaGo使用到了TPU,但数量只有4 颗,可以发现,真正用于人工智能的超级计算机芯片还只是处于CPU、GPU层,如何将更适用于网络神经算法的NPU、FPGA等芯片量产化并融合入超级计算机芯片矩阵,是在人工智能发展的第一阶段—技术驱动阶段应该重点努力的方向之一。
    在这里插入图片描述
  3. 云计算:与主要应用于密集型计算的超级计算机不同,云计算依靠其灵活的扩展能力主要应用于社交网络、企业IT建设和信息化等数据密集型、I/O密集型的领域。

我们分析认为,当AI跨越入第二阶段—数据驱动阶段后,算法和计算力将变成人工智能领域的基础设施—“水、电、煤”。就目前看来,多项算法开源平台已将AI算法引入统一、公用阶段,运算力也必将向同样的趋势发展。云计算则是一个初步尝试,未来,计算力的发展方向或将是云计算和超级计算机技术结合,为企业提供既可密集运算又可灵活扩展的计算服务,将人工智能赋能全行业。

3、数据驱动:描绘个性化画像;

场景驱动:给予决策支持

人工智能发展的第二个阶段,算法和计算力已基本不存在壁垒,数据将成为主要驱动力,推动人工智能更迭。此阶段,大量结构化、可靠的数据被采集、清洗和积累,甚至变现。例如,大量的数据基础上可以精确地描绘消费者画像,制定个性化营销方案,提高成单率,缩短达到预设目标的时间,推动社会运行效率提升。

到了人工智能发展的第三个阶段,场景驱动作为主要驱动力,不仅可以针对不同用户做个性化服务,而且可在不同的场景下执行不同的决策。此阶段,对数据收集的维度和质量的要求更高,并且可实时根据不同的场景,制定不同的决策方案,推动事件向良好的态势发展,帮助决策者更敏锐的洞悉事件根本,产生更精准更智慧的决策。
在这里插入图片描述

后记

深度学习的快速发展引发了人工智能领域的革命,其对各行各业的影响愈发显著。通过模拟人脑的学习过程,深度学习能够在海量数据的驱动下,自动从中提取特征、识别模式,并实现精确的分类和预测。在自然语言处理、计算机视觉、语音识别和机器翻译等领域,深度学习已经取得了一系列突破,大大提升了人工智能技术的性能和应用潜力。

然而,深度学习的进展并非孤立于其他因素。算法和模型的不断改进、计算能力的提升以及海量数据的积累,都为深度学习的发展提供了有力支撑。同时,深度学习的应用也要面对一些挑战,如模型的训练时间和资源消耗较高、对大量数据的依赖性等。因此,发展更高效、可解释的深度学习算法,提升计算平台的性能,以及更加注重数据隐私和安全,都是未来深度学习研究和应用的重要方向。

深度学习如今已经在各行各业中发挥着重要作用。在医疗领域,深度学习可以帮助医生进行影像诊断、预测病情发展趋势等,提高医疗效率和准确性。在金融领域,深度学习可以用于风险评估、欺诈检测等,提升金融机构的风控能力。在交通领域,深度学习可以应用于智能驾驶、交通预测等,改善交通拥堵和安全问题。这些仅仅是深度学习在各行各业中的冰山一角,它对社会经济的进步和科技发展的推动必将产生更加深远的影响。

总的来说,深度学习作为人工智能领域的重要支柱,正在重塑着我们的生活和工作方式。未来,随着技术的不断进步和创新,深度学习将会继续引领人工智能的发展,并为人类带来更加智能化、便利化的未来。

转载自:https://blog.csdn.net/u014727709/article/details/135991957
欢迎 👍点赞✍评论⭐收藏,欢迎指正

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1430429.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

日志追踪-Tracing

1. 前言 分布式链路跟踪中有两个重要的概念:跟踪(trace)和 跨度( span)。trace 是请求在分布式系统中的整个链路视图,span 则代表整个链路中不同服务内部的视图,span 组合在一起就是整个 trace 的视图在整个…

BUUCTF-Real-[struts2]s2-013

struts2的标签中 <s:a> 和 <s:url> 都有一个 includeParams 属性&#xff0c;可以设置成如下值none - URL中不包含任何参数&#xff08;默认&#xff09; get - 仅包含URL中的GET参数 all - 在URL中包含GET和POST参数 当includeParamsall的时候&#xff0c;会将本次…

学术研究新突破:发现新型相变存储器

斯坦福大学的研究人员开发出了一种新型相变存储器&#xff0c;该存储器有望帮助计算机更快、更高效地处理大量数据。在最近发表于《自然通讯》的一篇论文中&#xff0c;研究人员详细介绍了这项技术&#xff0c;表明一种新材料可能会使基于电阻高低状态切换以创建计算机数据“0”…

2024美赛数学建模D题思路+代码

文章目录 1 赛题思路2 美赛比赛日期和时间3 赛题类型4 美赛常见数模问题5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 美赛比赛日期和时间 比赛开始时间&#xff1a;北京时间2024年2月2日&#xff08;周五&#xff…

Blender教程(基础)-面的尖分、三角化与融并-09

一.面的尖分 1.准备 新建如下图所示物体、切换到编辑模式下 2.右键尖分正方形面 在选择中的面上右键选择尖分面 效果如下所示 3.右键尖分圆形面 效果如下 可以自行调节参数 二.面的三角化 1、正方形 2、圆形 三.融并 1、尖分圆形面 2、尖分圆形面-融并 发现…

Unity Meta Quest MR 开发(三):Scene API 配置+实现虚拟与现实之间的碰撞

文章目录 &#x1f4d5;教程说明&#x1f4d5; Scene 配置⭐开启场景理解功能和应用访问空间数据的权限⭐OVRSceneManager⭐制作 Plane Prefab 和 Volume Prefab⭐运行场景⭐添加透视材质 &#x1f4d5;虚拟与现实物体的碰撞&#xff08;弹球 Demo&#xff09;&#x1f4d5;Mes…

两数之和 - 暴力枚举+哈希表

两数之和原题地址 方法一&#xff1a;暴力枚举 首先&#xff0c;我们需要枚举数组中所有可能的下标对组合&#xff0c;对于n个数的数组&#xff0c;从中选2个下标&#xff0c;有种可能。做法很简单&#xff0c;遍历数组中的所有元素&#xff0c;对于每一个元素&#xff0c;遍…

yo!这里是c++IO流相关介绍

目录 前言 C语言的输入输出 CIO流基本介绍 流的概念 IO流类库 iostream fstream stringstream 后记 前言 学过C语言的输入输出相关知识点的童鞋应该多多少少会觉得有些许麻烦&#xff0c;反正我就是这么觉得的&#xff0c;scanf、printf等函数不仅数量众多&#xff0c…

RNN实战具体跑的代码

一、首先先上代码&#xff1a;这个是接pytorch API的调用代码 import torch import torch.nn as nn bs, T 2,3#批次大小&#xff0c;输入序列长度 input_size,hidden_size2,3#输入特征大小&#xff0c;隐含层特征大小 input torch.randn(bs,T, input_size) h_prev torch.ze…

css新手教程

css新手教程 课程&#xff1a;14、盒子模型及边框使用_哔哩哔哩_bilibili 一.什么是CSS 1.什么是CSS Cascading Style Sheet 层叠样式表。 CSS&#xff1a;表现&#xff08;美化网页&#xff09; 字体&#xff0c;颜色&#xff0c;边距&#xff0c;高度&#xff0c;宽度&am…

用户体验优化:HubSpot的秘密武器

在当今数字化市场中&#xff0c;提升用户体验已经成为企业成功的关键因素之一。HubSpot&#xff0c;作为一款领先的营销自动化工具&#xff0c;不仅在推动销售业绩上表现出色&#xff0c;同时通过其独特的策略也致力于提升用户体验。运营坛将深入探讨HubSpot是如何通过个性化推…

Leetcode92:反转链表II(区间反转链表)

一、题目 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输出&#xff1a…

Redisson看门狗机制

一、背景 网上redis分布式锁的工具方法&#xff0c;大都满足互斥、防止死锁的特性&#xff0c;有些工具方法会满足可重入特性。如果只满足上述3种特性会有哪些隐患呢&#xff1f;redis分布式锁无法自动续期&#xff0c;比如&#xff0c;一个锁设置了1分钟超时释放&#xff0c;…

Servlet+Ajax实现对数据的列表展示(极简入门)

目录 1.准备工作 1.数据库源&#xff08;这里以Mysql为例&#xff09; 2.映射实体类 3.模拟三层架构&#xff08;Dao、Service、Controller&#xff09; Dao接口 Dao实现 Service实现&#xff08;这里省略Service接口&#xff09; Controller层&#xff08;或叫Servlet层…

Vulnhub billu b0x

0x01 环境搭建 1. 从官方下载靶机环境&#xff0c;解压到本地&#xff0c;双击OVF文件直接导入到vmware虚拟机里面。2. 将虚拟机的网络适配器调成NAT模式&#xff0c;然后开机即可进行操作了。 0x02 主机发现 nmap -sn 192.168.2.0/24 成功获取靶机IP为192.168.2.129。 0x0…

网络时间协议NTP工作模式

单播服务器/客户端模式 单播服务器/客户端模式运行在同步子网中层数较高层上。这种模式下,需要预先知道服务器的IP地址。 客户端:运行在客户端模式的主机(简称客户端)定期向服务器端发送报文,报文中的Mode字段设置为3(客户端模式)。当客户端接收到应答报文时,客户端会…

指针2 1月31日学习笔记

一、strncpy、strncmp、strncat函数 strncpy函数用于将一个字符串的一部分拷贝到另一个字符串中。 char* strncpy(char *dest, const char *src, size_t n){size_t i;for (i 0; i < n && src[i] ! \0; i)dest[i] src[i];for ( ; i < n; i)dest[i] \0;return …

2024牛客寒假算法基础集训营1部分题解

// 能力有限&#xff0c;做多少发多少。 A-DFS搜索 题目描述 最近&#xff0c;fried-chicken完全学明白了DFS搜索&#xff08;如上图所示&#xff09;&#xff01;于是学弟向他请教DFS搜索&#xff0c;fried-chicken热心的进行了讲解&#xff1a; 所谓DFS搜索&#xff0c;就…

上海纽约大学信息技术部高级主任常潘:解密大数据引领的未来教育革命

大数据产业创新服务媒体 ——聚焦数据 改变商业 在数字化时代&#xff0c;大数据技术的应用已经深刻地改变着各行各业。特别是在教育领域&#xff0c;智慧校园建设作为现代化校园的代名词&#xff0c;正迎来大数据技术的巨大机遇。 1月17日&#xff0c;上海纽约大学信息技术部…

嵌入式软件工程师面试题——嵌入式专题(五十二)

说明&#xff1a; 面试群&#xff0c;群号&#xff1a; 228447240面试题来源于网络书籍&#xff0c;公司题目以及博主原创或修改&#xff08;题目大部分来源于各种公司&#xff09;&#xff1b;文中很多题目&#xff0c;或许大家直接编译器写完&#xff0c;1分钟就出结果了。但…