【紧耦合新范式】Think-on-Graph:解决大模型在医疗、法律、金融等垂直领域的幻觉

news2025/1/11 11:52:15

Think-on-Graph:解决大模型在医疗、法律、金融等垂直领域的幻觉

    • Think-on-Graph 原理
      • ToG 算法步骤:想想再查,查查再想
      • 实验结果

 


论文:https://arxiv.org/abs/2307.07697

代码:https://github.com/IDEA-FinAI/ToG

 

Think-on-Graph 原理

幻觉是什么:大模型的「幻觉」问题。

  • 多跳推理路径的探索算法,提高深度推理能力:ToG 通过在知识图谱中动态探索多个推理路径,并利用 beam search 算法挑选最有前景的路径,从而增强了LLMs的深度推理能力。

  • 显式、可编辑的推理路径,增强推理的责任感和可追溯性:通过提供明确的推理路径,ToG不仅增加了推理过程的可解释性,而且允许对模型输出的来源进行追踪和校正,从而提高了推理的责任感和可靠性。

  • 插件式框架,提高大模型的灵活性和效率:通过知识图谱而非LLMs更新知识,可以提高知识的更新频率,降低更新成本,同时增强小型LLMs的推理能力,使其能与大型模型(如GPT-4)竞争。

 
在这里插入图片描述

Think-on-Graph 新技术 对比 之前的技术:

(a) LLM-only(只有大模型的情况):

在这个例子中,LLM独立地尝试回答问题:“What is the majority party now in the country where Canberra is located?”。

LLM使用的是链式思考,首先确认堪培拉是澳大利亚的首都,然后基于2021年9月的信息,认为澳大利亚总理是斯科特·莫里森,属于自由党,所以答案应该是自由党。

然而,这个答案是错误的,因为LLM的知识是过时的。

 

(b) LLM ⊕ KG(例如,通过LLM生成的SPARQL查询):

在这种范式下,LLM首先生成一个SPARQL查询来检索知识图谱(KG)。

在这个例子中,查询是为了找到堪培拉的国家,并检索该国家的主要政党。

由于知识图谱中不存在“majority party”的相关信息,这种方法未能得出正确答案。

 

© LLM ⊗ KG(例如,Think-on-Graph):

这个范式展示了LLM与知识图谱紧密协作。

首先,LLM通过探索知识图谱中与堪培拉有关的三元组(triples)。

然后,通过“Think”步骤,它找到了最相关的三元组是(澳大利亚,首相,安东尼·阿尔巴尼斯)。

由于LLM知道安东尼·阿尔巴尼斯属于劳工党,并且自2019年以来一直是澳大利亚劳工党(ALP)的领导者,因此能够推断出正确答案是劳工党。

 

所以,Think-on-Graph 这种LLM与知识图谱的新技术,效果也是最好的。

  • LLM ⊗ KG (Think-on-Graph) 方法通过结合LLM的动态推理能力和KG的丰富、结构化知识
  • 显著提升了解答的准确性和可靠性
  • 解决了仅使用LLM时的知识过时问题 和 LLM与KG结合时的信息缺失问题

 

Think-on-Graph 工作流程:

工作流程分为三个深度搜索阶段(Depth 1、Depth 2、Depth 3),逐步深化搜索,每个阶段都深入探索与前一阶段发现的实体相关的更多信息。

  • 以回答问题:“堪培拉所在的国家目前的主要政党是什么?”
  1. Depth 1:识别问题中的关键实体(堪培拉)和与其直接相关的属性(它是哪个国家的首都)。

    • 搜索: 以堪培拉为中心,探索相关实体和关系。
    • 剪枝: 对探索结果进行评估,保留重要的实体和关系,淘汰评分低的部分。在这个阶段,确定堪培拉是一个地域,是澳大利亚的首都。
  2. Depth 2:以第一阶段确定的国家(澳大利亚)为中心,进一步探索与政府头目(首相)相关的信息。

    • 搜索: 以澳大利亚为中心,进一步探索与政府、首相等相关的实体和关系。
    • 剪枝: 继续评估和淘汰,确定了澳大利亚的首相是安东尼·阿尔巴尼斯。
  3. Depth 3:最后,确定首相(安东尼·阿尔巴尼斯)的政党隶属,从而得出国家的主要政党。

    • 搜索: 最后以安东尼·阿尔巴尼斯为中心,搜索与政党相关的实体和关系。
    • 剪枝: 最终找到安东尼·阿尔巴尼斯与劳工党的关系。

在每个深度的搜索和剪枝过程中,发光的实体代表中心实体,粗体实体代表被选中的中心实体。

图中的边缘的黑暗度代表了由LLM给出的评分,虚线表示由于评分低而被剪枝的关系(精准回答,避免模糊宽泛)。

最终,基于这些推理路径,生成的答案是“Labor Party”(劳工党)。

本质:ToG通过逐步深入的探索和剪枝过程,结合LLM的推理能力和KG的丰富数据,动态构建推理路径以提供精准且可追溯的答案。

 


ToG 算法步骤:想想再查,查查再想

ToG方法的主要问题是如何利用LLM进行深度推理以回答基于知识图谱的复杂问题。

ToG是通过 beam search 在知识图谱上执行搜索,以此来解决问题。

  1. 子问题1:初始化图搜索。

    • 子解法1:定位初始实体。
      之所以使用这个解法,是因为需要在知识图谱中确定起始点,这是构建推理路径的基础。
  2. 子问题2:探索。

    • 子解法2.1:关系探索。
      用于从当前已知实体探索可能的关系,因为这有助于确定接下来可能的推理方向。
    • 子解法2.2:实体探索。
      接着用于从已知关系探索相关实体,因为这可以进一步扩展推理路径。
  3. 子问题3:推理。

    • 子解法3:评估推理路径。
      之所以使用此解法,是因为需要评估当前推理路径是否足够回答问题,如果足够则生成答案,否则继续探索和推理过程。

 

还有 ToG-R(基于关系的Think-on-Graph 变种):

  1. 子问题1:减少LLM调用次数。

    • 子解法1:随机剪枝。
      之所以使用这个解法,是因为它减少了使用LLM进行实体剪枝的需要,这样可以降低总体成本和推理时间。
  2. 子问题2:强调关系文字信息。

    • 子解法2:关系链探索。
      选择这种解法是因为它强调了关系的文字信息,当中间实体的文字信息缺失或LLM不熟悉时,可以减少误导推理的风险。

ToG 方法的本质在于,通过LLM执行的知识图谱上的beam search,分阶段探索和评估推理路径,以便深度推理出复杂问题的精确答案,而 ToG-R 进一步减少了LLM调用,强调文字信息,提高了效率和鲁棒性。

  • 初始化图搜索的问题,通过定位初始实体的子解法来解决。
  • 探索问题,通过关系探索和实体探索两个子解法来解决。
  • 推理问题,通过评估推理路径的子解法来解决。
  • ToG-R 特有的问题,通过随机剪枝和关系链探索两个子解法来解决。

在这里插入图片描述

 
假设我们要回答的问题是:“谁是最近一次举办奥运会的国家的现任总统?”

  1. 初始化图搜索:

    • 我们首先利用LLM确定问题中的关键实体“最近一次举办奥运会的国家”,并将其作为搜索的起始点。
  2. 探索:

    • 关系探索:
      在知识图谱中搜索与“奥运会举办国”相关的实体关系,比如“举办年份”和“国家”。
    • 实体探索:
      接下来,我们基于“举办年份”这一关系,探索出最近一次举办奥运会的具体国家,例如“日本”。
  3. 推理:

    • 根据已经探索到的信息,评估是否有足够的数据来回答原问题。
    • 如果已知的国家“日本”和关系“现任总统”足够回答问题,我们就进行下一步;
    • 如果不足够,就需要进一步的探索和推理。

在ToG-R中,如果在实体探索阶段关系信息不够充分,我们可能会采用随机剪枝策略,选择一个可能的实体,例如随机选择一位政治人物,然后继续下一轮探索。

 


实验结果

ToG这个算法通过在各种不同的数据集上的测试显示出它很擅长处理需要多步逻辑推理的复杂问题,这得益于它能够在多个层面上全面理解和应用知识图谱中的信息。

  • 在和其他方法的比较中,ToG特别展现了它的泛化能力,即使在没有针对特定问题集进行训练的情况下,它也能提供准确的答案。

实验中还特别考察了不同大小的语言模型对ToG的影响。

  • 结果表明,更大的模型能够更好地发挥知识图谱的潜力,但即便是较小的模型,ToG也能超越只用最大模型的传统方法。
  • 这意味着使用ToG,我们可以用更经济的小模型来代替昂贵的大模型,特别是在那些外部知识图谱能提供帮助的特定场景中。

此外,ToG的性能也受到搜索深度和宽度的影响,通过调整这两个参数,ToG的表现有所提升,尽管提升的幅度在深度超过一定阈值后会减弱。

  • 在提高性能的同时也要考虑到计算成本。

不同知识图谱的选择也对ToG的表现有显著影响。

  • 例如,在构建于Freebase上的数据集中,ToG的表现更好,这显示了匹配度高的知识图谱对提升性能至关重要。

  • 而且,不同的提示设计,如三元组格式相比自然语言句子,对于ToG来说也有更好的效果。

在探索过程中使用不同的剪枝工具也会影响ToG的表现。

  • 实验表明,与BM25或SentenceBERT相比,使用LLM作为剪枝工具可以获得更好的结果,尽管后者在效率上有优势。

最后,ToG的一个独特之处在于它提供了知识的追溯性和可校正性。

  • 如果用户发现了推理过程中的错误,他们可以通过ToG回溯并纠正知识图谱中的错误信息。
  • 不仅增强了LLM使用知识图谱的能力,还提升了知识图谱本身的质量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1429843.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI专题:2023年AI创意营销趋势白皮书

今天分享的是AI系列深度研究报告:《AI专题:2023年AI创意营销趋势白皮书》。 (报告出品方:蓝色光标集团销博特) 报告共计:65页 2022年10月 Stabili ty AI获得1.01亿美元融资 开源人工智能公司 StabilityA…

STM32CAN2进入bus off 模式

工作遇到的问题记录 无人机CAN2整个进不了中断,通过查看寄存器判定出CAN节点进入了bus off mode 为何进入bus off ,最后通过示波器看到整个CAN2总线波形就不对,总线出现了错误 Busoff的产生是一定是因为节点自身识别到自己发送错误&#xff…

Konva中滚动问题

现在有两个group,想要的效果时拖动绿的group时,红色group按照相同方向移动同样距离 可以在绿的group的拖动方法中 通过move方法 移动红色的group

零基础Vue框架上手;git,node,yarn安装

项目搭建环境: git安装:Git - 安装 Git (git-scm.com)(官网) 下载路径:Git - Downloading Package (git-scm.com);根据自己电脑下载相对应的安装包 ​ 点next ​ 点next,点到最后安装就行。…

人工智能基础-matplotlib基础

绘制图形 import numpy as np x np.linspace(0, 10, 100) y np.sin(x) import matplotlib as mpl import matplotlib.pyplot as plt plt.plot(x, y) plt.show()绘制多条曲线 siny y.copy() cosy np.cos(x) plt.plot(x, siny) plt.plot(x, cosy) plt.show()设置线条颜色 …

2024年第四届能源与环境工程国际会议(CoEEE 2024) | Ei Scopus检索

会议简介 Brief Introduction 2024年第四届能源与环境工程国际会议(CoEEE 2024) 会议时间:2024年5月22日-24日 召开地点:意大利米兰 大会官网:www.coeee.org CoEEE 2024将围绕“能源与环境工程”的最新研究领域而展开,为研究人员、…

ES6-数组的解构赋值

一、数组的解构赋值的规律 - 只要等号两边的模式相同,左边的变量就会被赋予对应的值二、数组的解构赋值的例子讲解 1)简单的示例(完整的解构赋值) 示例 //基本的模式匹配 // a,b,c依次和1,2&#xff0c…

CSS 外边距合并、塌陷和BFC

外边距合并 CSS中的外边距合并指的是当两个相邻元素都设置了上下外边距时,它们之间会发生重叠。这种现象被称为"margin collapsing"(外边距合并)或者"margin collapse"(外边距塌陷)。 可以看出上…

【PTA浙大版《C语言程序设计(第4版)》编程题】练习7-4 找出不是两个数组共有的元素(附测试点)

目录 输入格式: 输出格式: 输入样例: 输出样例: 代码呈现 测试点 给定两个整型数组,本题要求找出不是两者共有的元素。 输入格式: 输入分别在两行中给出两个整型数组,每行先给出正整数N(≤20),随后是N个整数&a…

【DDD】学习笔记-代码模型的架构决策

代码模型属于软件架构的一部分,它是设计模型的进化与实现,体现出了代码模块(包)的结构层次。在架构视图中,代码模型甚至会作为其中的一个视图,通过它来展现模块的划分,并定义运行时实体与执行视…

Leetcode—203. 移除链表元素【简单】

2024每日刷题(一零九) Leetcode—203. 移除链表元素 实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(n…

ffmpeg 时间裁剪之-ss -t与滤镜中trim=start=*:duration=*的区别和联系

背景 工作中遇到的呗。记下来贡着。 滤镜重置时间戳:setptsPTS-STARTPTS 在FFmpeg中,setptsPTS-STARTPTS是一种用于调整视频时间戳(PTS)的滤镜表达式。这个表达式通常用于视频编辑和处理过程中,用于修改视频的时间轴…

H5 加密(MD5 Base64 sha1)

1. 说明 很多的时候是避免不了注册登录这一关的,但是一般的注册是没有任何的难度的,无非就是一些简单的获取用户输入的数据,然后进行简单的校验以后调用接口,将数据发送到后端,完成一个简单的注册的流程,那…

代码随想录 Leetcode93. 复原 IP 地址

题目&#xff1a; 代码(首刷看解析 2024年2月3日&#xff09;&#xff1a; class Solution { public:vector<string> res;bool Enligible(string& s, int left, int right) {if (left > right) return false;if (s[left] 0 && left ! right) return fal…

类银河恶魔城学习记录1-1 Player状态机的搭建 P28

对状态机的介绍 什么是状态机&#xff1f;一篇文章就够了 - 知乎 说实话&#xff0c;目前并不能深入理解状态机的奇妙之处&#xff08;当然&#xff0c;我觉得状态机作为教程的重要组成部分是不得不理解的&#xff0c;所以以下我会对游戏教程内的状态机做一些我认为的解释&am…

通过 ChatGPT 的 Function Call 查询数据库

用 Function Calling 的方式实现手机流量包智能客服的例子。 def get_sql_completion(messages, model"gpt-3.5-turbo"):response client.chat.completions.create(modelmodel,messagesmessages,temperature0,tools[{ # 摘自 OpenAI 官方示例 https://github.com/…

element-ui link 组件源码分享

link 组件的 api 涉及的内容不是很多&#xff0c;源码部分的内容也相对较简单&#xff0c;下面从以下这三个方面来讲解&#xff1a; 一、组件结构 1.1 组件结构如下图&#xff1a; 二、组件属性 2.1 组件主要有 type、underline、disabled、href、icon 这些属性&#xff0c;…

云服务器安全组、防火墙、端口问题,结合telnet解决项目部署无法访问

无论是运维还是后台亲自操刀在云服务器上部署项目&#xff0c;往往会遇到项目部署上去了&#xff0c;也确定项目正常运行&#xff0c;但还是没法访问的问题。 如果没有经验的小伙伴&#xff0c;很容易陷入疑惑的状态&#xff0c;无从下手解决。 其实这涉及到云平台安全组、服…

centos7安装oracle

1 安装虚拟机 设置4G内存&#xff0c;硬盘40G 2 配置网络环境 2.1配置主机名 # vi /etc/hostname 修改为 oracle2.2 配置IP地址 # vi /etc/sysconfig/network-scripts/ifcfg-ens33 修改 BOOTPROTO"static" ONBOOT"yes" IPADDR192.168.109.110 NETMAS…

如何过滤离线logcat日志文件?

1.需求&#xff1a; How did Android Studio Logcat to read the files which have save in logcat? I saved some logs and would like to open them with Android Studio - Logcat interface and be able to see the colours and apply some filters just as if the pho…