一、 统一的列表初始化
1.1 {}初始化
在C++98中,标准允许
使用花括号{}对数组或者结构体元素
进行统一的列表初始值设定
C++11扩大了用大括号
括起的列表(初始化列表)的使用范围
使其可用于所有的内置类型和
用户自定义的类型
使用初始化列表时
可添加等号(=),也可不添加
class Date
{
public:
Date(int year, int month, int day)
:_year(year)
, _month(month)
, _day(day)
{
cout << "Date(int year, int month, int day)" << endl;
}
private:
int _year;
int _month;
int _day;
};
void test1()
{
Date d1(2024, 1, 29); // old style
// C++11支持的列表初始化,这里会调用构造函数初始化
Date d2{ 2024, 1, 30 };
Date d3 = { 2024, 1, 31 };
vector<Date> vd1 = { d1, d2 };
vector<Date> vd2 = { Date{ 2024, 1, 29 }, Date{ 2024, 1, 30 } };
vector<Date> vd3 = { { 2024, 1, 29 }, { 2024, 1, 31 } };
map<string, string> dict = { {"sort", "排序"}, {"string", "字符串"}, {"Date", "日期"} };
pair<string, string> kv1 = { "Date", "日期" };
pair<string, string> kv2{ "Date", "日期" };
}
1.2 std::initializer_list
std::initializer_list的介绍文档:
http://www.cplusplus.com/reference/initializer_list/initializer_list/
std::initializer_list是什么类型:
int main()
{
// the type of il is an initializer_list
auto il = { 10, 20, 30 };
cout << typeid(il).name() << endl;
initializer_list<int>::iterator it = il.begin();
cout << it;
// *it = 1; // 不能修改因为指向常量区
return 0;
}
std::initializer_list使用场景:
std::initializer_list一般是作为构造函数的参数
C++11对STL中的不少容器就增加
std::initializer_list作为参数的构造函数
这样初始化容器对象就更方便了
也可以作为operator=的参数
这样就可以用大括号赋值
以前我们模拟实现的vector
不支持{}初始化和赋值
现在可以通过加一个构造函数实现
{}初始化和赋值
vector(initializer_list<T> il)
{
// 第一种方法用迭代器支持
/*typename initializer_list<T>::iterator it = il.begin();
while (it != il.end())
{
push_back(*it);
++it;
}*/
// 第二种方法范围for支持
for (auto& e : il)
{
push_back(e);
}
}
二、声明
2.1 decltype
关键字decltype将变量的类型
声明为表达式指定的类型
// decltype的一些使用使用场景
template<class T1, class T2>
void F(T1 t1, T2 t2)
{
decltype(t1 * t2) ret;
cout << typeid(ret).name() << endl;
}
int main()
{
const int x = 1;
double y = 2.2;
decltype(x * y) ret; // x*y是double类型,ret的类型是double
decltype(&x) p; // p的类型是const int*
cout << typeid(ret).name() << endl;
cout << typeid(p).name() << endl;
F(1, 'a');
return 0;
}
// 以上都能通过auto解决,而下面则无法通过auto解决
// vector存储的类型跟x*y表达式返回值类型一致
vector<decltype(x * y)> v;
decltype可以推导一个表达式的类型
用这个类型实例化模板参数或定义对象
2.2 nullptr
由于C++中NULL被定义成字面量0
这样就可能回带来一些问题
因为0既能指针常量
又能表示整形常量
所以出于清晰和安全的角度考虑
C++11中新增了nullptr,用于表示空指针
三、STL中一些变化
3.1 新容器
用橘色圈起来是
C++11中的一些几个新容器
最有用的是unordered_map和
unordered_set
array和forward_list就比较鸡肋
基本每个容器都增加了一些C++11的方法
- 增加支持initializer_list的构造函数
使用更方便, 有一定价值 - 增加cbegin和cend系列迭代器接口
比较鸡肋 - 移动构造和移动赋值
vector (vector&& x); - 支持右值引用相关插入接口函数
3和4价值非常大, 提高了拷贝效率
四、右值引用和移动语义
4.1 左值引用
我们之前学的引用叫左值引用
而C++11中新增了的右值引用语法特性
无论左值引用还是右值引用
都是给对象取别名
左值是一个表示数据的表达式
(如变量名或解引用的指针)
通过获取它的地址+可以对它赋值
左值可以出现在赋值符号的左边,也可以是右边
定义时const修饰符后的左值
不能给他赋值,但是可以取它的地址
左值引用就是给左值的引用,给左值取别名
// 以下的p、b、c、*p都是左值
int* p = new int(0);
int b = 1;
const int c = 2;
// 以下几个是对上面左值的左值引用
int*& rp = p;
int& rb = b;
const int& rc = c;
int& pvalue = *p;
4.2 右值引用
右值也是一个表示数据的表达式
如:字面常量、表达式返回值
函数返回值(这个不能左值引用返回)等等
右值只能出现在赋值符号的右边
右值不能取地址
右值引用就是对右值的引用,给右值取别名
double x = 1.1, y = 2.2;
// 以下几个都是常见的右值
10;
x + y;
fmin(x, y);
// 以下几个都是对右值的右值引用
int&& rr1 = 10;
double&& rr2 = x + y;
double&& rr3 = fmin(x, y);
// 这里编译会报错:error C2106: “=”: 左操作数必须为左值
10 = 1;
x + y = 1;
fmin(x, y) = 1;
需要注意的是:
右值不能取地址的
但是给右值取别名后
会导致右值被存储到特定位置
且可以取到该位置的地址
也就是说例如:不能取字面量10的地址
但是rr1引用后,可以对rr1取地址,也可以修改rr1
如果不想rr1被修改,可以用const int&& rr1 去引用
double x = 1.1, y = 2.2;
int&& rr1 = 10;
const double&& rr2 = x + y;
rr1 = 20;
rr2 = 5.5; // 报错
4.3 左值引用与右值引用比较
左值:
- 左值引用只能引用左值,不能引用右值
(权限会被放大) - 但是const左值引用既可引用左值
也可引用右值
// 左值引用只能引用左值,不能引用右值。
int a = 10;
int& ra1 = a; // ra为a的别名
//int& ra2 = 10; // 编译失败,因为10是右值
// const左值引用既可引用左值,也可引用右值。
const int& ra3 = 10;
const int& ra4 = a;
右值:
- 右值引用只能右值,不能引用左值
- 但是右值引用可以move以后的左值
// 右值引用只能右值,不能引用左值。
int&& r1 = 10;
// error C2440: “初始化”: 无法从“int”转换为“int &&”
// message : 无法将左值绑定到右值引用
int a = 10;
int&& r2 = a;
// 右值引用可以引用move以后的左值
int&& r3 = std::move(a);
std::move的功能:
将一个左值强制转化为右值(将亡值)
(但并不能移动任何东西)
然后通过右值引用使用该值,以用于移动语义
从实现上讲
std::move基本等同于一个类型转换:
static_cast<T&&>(lvalue);
C++ 标准库使用比如vector::push_back等这类函数时
会对参数的对象进行复制,连数据也会复制
这会造成对象内存的额外创建
本来只是想把参数push_back进去就行了
通过std::move,可以避免不必要的拷贝操作
std::move是为性能而生
std::move是将对象的状态或者所有权
从一个对象转移到另一个对象
只是转移,没有内存的搬迁或者内存拷贝
4.4 右值引用使用场景和意义
右值分为纯右值和将亡值
// 模拟实现string
string s1("hello world");
// 如果s1是左值,调用正常拷贝构造走深拷贝
string ret1 = s1;
// 如果是右值(将亡值)还走深拷贝就很不划算
// 将亡值是即将被delete的值
string ret2 = (s1+'!');
这时可以重新写一个拷贝构造
用右值引用来接收传参
以此区分左值和右值
如果是右值把我置空跟你交换一下
并且在函数传参上右值引用也能发挥作用
string to_string(int value)
{
string ret;
return ret;
}
int main()
{
string s = to_string(123);
return 0;
}
返回值把值赋给临时对象有一次拷贝构造
临时对象把值赋给s又会有一次拷贝构造
编译器优化之后把值直接赋给s
减少一次拷贝构造
有了右值引用
这样ret返回值不用调析构
s也不用调拷贝
总结:
左值引用减少拷贝, 提高效率
右值引用也是减少拷贝, 提高效率
但是他们的角度不同
左值引用是直接减少拷贝
右值引用是间接减少拷贝
识别出是左值还是右值
如果是右值, 则不再深拷贝
直接移动拷贝, 提高效率
五、模板中的&& 万能引用
模板中的&&不代表右值引用
而是万能引用,其既能接收左值又能接收右值
模板的万能引用只是提供了
能够接收同时接收左值引用和右值引用的能力
void Fun(int &x){ cout << "左值引用" << endl; }
void Fun(const int &x){ cout << "const 左值引用" << endl; }
void Fun(int &&x){ cout << "右值引用" << endl; }
void Fun(const int &&x){ cout << "const 右值引用" << endl; }
template<typename T>
void PerfectForward(T&& t)
{
Fun(t);
}
int main()
{
PerfectForward(10); // 右值
int a;
PerfectForward(a); // 左值
PerfectForward(std::move(a)); // 右值
const int b = 8;
PerfectForward(b); // const 左值
PerfectForward(std::move(b)); // const 右值
但是引用类型的唯一作用就是限制接收的类型
后续使用中都退化成了左值
如果希望在传递过程中保持它的
左值或者右值的属性
就需要用到完美转发
5.1 完美转发
std::forward 完美转发
在传参的过程中保留对象原生类型属性
template<typename T>
void PerfectForward(T&& t)
{
Fun(std::forward<T>(t));
}
int main()
{
PerfectForward(10); // 右值
int a;
PerfectForward(a); // 左值
PerfectForward(std::move(a)); // 右值
const int b = 8;
PerfectForward(b); // const 左值
PerfectForward(std::move(b)); // const 右值
本篇博客完,感谢阅读🌹
如有错误之处可评论指出
博主会耐心听取每条意见