实现LRU淘汰算法
LRU
缓存算法是一个非常经典的算法,在很多面试中经常问道,不仅仅包括前端面试
LRU
英文全称是Least Recently Used
,英译过来就是” 最近最少使用 “的意思。LRU
是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间t
,当须淘汰一个页面时,选择现有页面中其t
值最大的,即最近最少使用的页面予以淘汰
通俗的解释:
假如我们有一块内存,专门用来缓存我们最近发访问的网页,访问一个新网页,我们就会往内存中添加一个网页地址,随着网页的不断增加,内存存满了,这个时候我们就需要考虑删除一些网页了。这个时候我们找到内存中最早访问的那个网页地址,然后把它删掉。这一整个过程就可以称之为
LRU
算法
上图就很好的解释了 LRU
算法在干嘛了,其实非常简单,无非就是我们往内存里面添加或者删除元素的时候,遵循最近最少使用原则
使用场景
LRU
算法使用的场景非常多,这里简单举几个例子即可:
- 我们操作系统底层的内存管理,其中就包括有
LRU
算法 - 我们常见的缓存服务,比如
redis
等等 - 比如浏览器的最近浏览记录存储
vue
中的keep-alive
组件使用了LRU
算法
梳理实现 LRU 思路
- 特点分析:
- 我们需要一块有限的存储空间,因为无限的化就没必要使用
LRU
算发删除数据了。 - 我们这块存储空间里面存储的数据需要是有序的,因为我们必须要顺序来删除数据,所以可以考虑使用
Array
、Map
数据结构来存储,不能使用Object
,因为它是无序的。 - 我们能够删除或者添加以及获取到这块存储空间中的指定数据。
- 存储空间存满之后,在添加数据时,会自动删除时间最久远的那条数据。
- 我们需要一块有限的存储空间,因为无限的化就没必要使用
- 实现需求:
- 实现一个
LRUCache
类型,用来充当存储空间 - 采用
Map
数据结构存储数据,因为它的存取时间复杂度为O(1)
,数组为O(n)
- 实现
get
和set
方法,用来获取和添加数据 - 我们的存储空间有长度限制,所以无需提供删除方法,存储满之后,自动删除最久远的那条数据
- 当使用
get
获取数据后,该条数据需要更新到最前面
- 实现一个
具体实现
class LRUCache {
constructor(length) {
this.length = length; // 存储长度
this.data = new Map(); // 存储数据
}
// 存储数据,通过键值对的方式
set(key, value) {
const data = this.data;
if (data.has(key)) {
data.delete(key)
}
data.set(key, value);
// 如果超出了容量,则需要删除最久的数据
if (data.size > this.length) {
const delKey = data.keys().next().value;
data.delete(delKey);
}
}
// 获取数据
get(key) {
const data = this.data;
// 未找到
if (!data.has(key)) {
return null;
}
const value = data.get(key); // 获取元素
data.delete(key); // 删除元素
data.set(key, value); // 重新插入元素
return value // 返回获取的值
}
}
var lruCache = new LRUCache(5);
set 方法
:往map
里面添加新数据,如果添加的数据存在了,则先删除该条数据,然后再添加。如果添加数据后超长了,则需要删除最久远的一条数据。data.keys().next().value
便是获取最后一条数据的意思。get 方法
:首先从map
对象中拿出该条数据,然后删除该条数据,最后再重新插入该条数据,确保将该条数据移动到最前面
// 测试
// 存储数据 set:
lruCache.set('name', 'test');
lruCache.set('age', 10);
lruCache.set('sex', '男');
lruCache.set('height', 180);
lruCache.set('weight', '120');
console.log(lruCache);
继续插入数据,此时会超长,代码如下:
lruCache.set('grade', '100');
console.log(lruCache);
此时我们发现存储时间最久的 name 已经被移除了,新插入的数据变为了最前面的一个。
我们使用 get
获取数据,代码如下:
我们发现此时 sex
字段已经跑到最前面去了
总结
LRU
算法其实逻辑非常的简单,明白了原理之后实现起来非常的简单。最主要的是我们需要使用什么数据结构来存储数据,因为map
的存取非常快,所以我们采用了它,当然数组其实也可以实现的。还有一些小伙伴使用链表来实现LRU
,这当然也是可以的。
将虚拟 Dom 转化为真实 Dom
{
tag: 'DIV',
attrs:{
id:'app'
},
children: [
{
tag: 'SPAN',
children: [
{ tag: 'A', children: [] }
]
},
{
tag: 'SPAN',
children: [
{ tag: 'A', children: [] },
{ tag: 'A', children: [] }
]
}
]
}
把上面虚拟Dom转化成下方真实Dom
<div id="app">
<span>
<a></a>
</span>
<span>
<a></a>
<a></a>
</span>
</div>
实现
// 真正的渲染函数
function _render(vnode) {
// 如果是数字类型转化为字符串
if (typeof vnode === "number") {
vnode = String(vnode);
}
// 字符串类型直接就是文本节点
if (typeof vnode === "string") {
return document.createTextNode(vnode);
}
// 普通DOM
const dom = document.createElement(vnode.tag);
if (vnode.attrs) {
// 遍历属性
Object.keys(vnode.attrs).forEach((key) => {
const value = vnode.attrs[key];
dom.setAttribute(key, value);
});
}
// 子数组进行递归操作
vnode.children.forEach((child) => dom.appendChild(_render(child)));
return dom;
}
实现一个迭代器生成函数
ES6对迭代器的实现
JS原生的集合类型数据结构,只有Array
(数组)和Object
(对象);而ES6
中,又新增了Map
和Set
。四种数据结构各自有着自己特别的内部实现,但我们仍期待以同样的一套规则去遍历它们,所以ES6
在推出新数据结构的同时也推出了一套 统一的接口机制 ——迭代器(Iterator
)。
ES6
约定,任何数据结构只要具备Symbol.iterator
属性(这个属性就是Iterator
的具体实现,它本质上是当前数据结构默认的迭代器生成函数),就可以被遍历——准确地说,是被for...of...
循环和迭代器的next方法遍历。 事实上,for...of...
的背后正是对next
方法的反复调用。
在ES6中,针对Array
、Map
、Set
、String
、TypedArray
、函数的 arguments
对象、NodeList
对象这些原生的数据结构都可以通过for...of...
进行遍历。原理都是一样的,此处我们拿最简单的数组进行举例,当我们用for...of...
遍历数组时:
const arr = [1, 2, 3]
const len = arr.length
for(item of arr) {
console.log(`当前元素是${item}`)
}
之所以能够按顺序一次一次地拿到数组里的每一个成员,是因为我们借助数组的
Symbol.iterator
生成了它对应的迭代器对象,通过反复调用迭代器对象的next
方法访问了数组成员,像这样:
const arr = [1, 2, 3]
// 通过调用iterator,拿到迭代器对象
const iterator = arr[Symbol.iterator]()
// 对迭代器对象执行next,就能逐个访问集合的成员
iterator.next()
iterator.next()
iterator.next()
丢进控制台,我们可以看到next
每次会按顺序帮我们访问一个集合成员:
而
for...of...
做的事情,基本等价于下面这通操作:
// 通过调用iterator,拿到迭代器对象
const iterator = arr[Symbol.iterator]()
// 初始化一个迭代结果
let now = { done: false }
// 循环往外迭代成员
while(!now.done) {
now = iterator.next()
if(!now.done) {
console.log(`现在遍历到了${now.value}`)
}
}
可以看出,
for...of...
其实就是iterator
循环调用换了种写法。在ES6中我们之所以能够开心地用for...of...
遍历各种各种的集合,全靠迭代器模式在背后给力。
ps:此处推荐阅读迭代协议 (opens new window),相信大家读过后会对迭代器在ES6中的实现有更深的理解。
实现深拷贝
简洁版本
简单版:
const newObj = JSON.parse(JSON.stringify(oldObj));
局限性:
- 他无法实现对函数 、RegExp等特殊对象的克隆
- 会抛弃对象的
constructo
r,所有的构造函数会指向Object
- 对象有循环引用,会报错
面试简版
function deepClone(obj) {
// 如果是 值类型 或 null,则直接return
if(typeof obj !== 'object' || obj === null) {
return obj
}
// 定义结果对象
let copy = {}
// 如果对象是数组,则定义结果数组
if(obj.constructor === Array) {
copy = []
}
// 遍历对象的key
for(let key in obj) {
// 如果key是对象的自有属性
if(obj.hasOwnProperty(key)) {
// 递归调用深拷贝方法
copy[key] = deepClone(obj[key])
}
}
return copy
}
调用深拷贝方法,若属性为值类型,则直接返回;若属性为引用类型,则递归遍历。这就是我们在解这一类题时的核心的方法。
进阶版
- 解决拷贝循环引用问题
- 解决拷贝对应原型问题
// 递归拷贝 (类型判断)
function deepClone(value,hash = new WeakMap){ // 弱引用,不用map,weakMap更合适一点
// null 和 undefiend 是不需要拷贝的
if(value == null){ return value;}
if(value instanceof RegExp) { return new RegExp(value) }
if(value instanceof Date) { return new Date(value) }
// 函数是不需要拷贝
if(typeof value != 'object') return value;
let obj = new value.constructor(); // [] {}
// 说明是一个对象类型
if(hash.get(value)){
return hash.get(value)
}
hash.set(value,obj);
for(let key in value){ // in 会遍历当前对象上的属性 和 __proto__指代的属性
// 补拷贝 对象的__proto__上的属性
if(value.hasOwnProperty(key)){
// 如果值还有可能是对象 就继续拷贝
obj[key] = deepClone(value[key],hash);
}
}
return obj
// 区分对象和数组 Object.prototype.toString.call
}
// test
var o = {};
o.x = o;
var o1 = deepClone(o); // 如果这个对象拷贝过了 就返回那个拷贝的结果就可以了
console.log(o1);
实现完整的深拷贝
1. 简易版及问题
JSON.parse(JSON.stringify());
估计这个api能覆盖大多数的应用场景,没错,谈到深拷贝,我第一个想到的也是它。但是实际上,对于某些严格的场景来说,这个方法是有巨大的坑的。问题如下:
- 无法解决
循环引用
的问题。举个例子:
const a = {val:2};
a.target = a;
拷贝
a
会出现系统栈溢出,因为出现了无限递归的情况。
- 无法拷贝一些特殊的对象,诸如
RegExp, Date, Set, Map
等 - 无法拷贝
函数
(划重点)。
因此这个api先pass掉,我们重新写一个深拷贝,简易版如下:
const deepClone = (target) => {
if (typeof target === 'object' && target !== null) {
const cloneTarget = Array.isArray(target) ? []: {};
for (let prop in target) {
if (target.hasOwnProperty(prop)) {
cloneTarget[prop] = deepClone(target[prop]);
}
}
return cloneTarget;
} else {
return target;
}
}
现在,我们以刚刚发现的三个问题为导向,一步步来完善、优化我们的深拷贝代码。
2. 解决循环引用
现在问题如下:
let obj = {val : 100};
obj.target = obj;
deepClone(obj);//报错: RangeError: Maximum call stack size exceeded
这就是循环引用。我们怎么来解决这个问题呢?
创建一个Map。记录下已经拷贝过的对象,如果说已经拷贝过,那直接返回它行了。
const isObject = (target) => (typeof target === 'object' || typeof target === 'function') && target !== null;
const deepClone = (target, map = new Map()) => {
if(map.get(target))
return target;
if (isObject(target)) {
map.set(target, true);
const cloneTarget = Array.isArray(target) ? []: {};
for (let prop in target) {
if (target.hasOwnProperty(prop)) {
cloneTarget[prop] = deepClone(target[prop],map);
}
}
return cloneTarget;
} else {
return target;
}
}
现在来试一试:
const a = {val:2};
a.target = a;
let newA = deepClone(a);
console.log(newA)//{ val: 2, target: { val: 2, target: [Circular] } }
好像是没有问题了, 拷贝也完成了。但还是有一个潜在的坑, 就是map 上的 key 和 map 构成了强引用关系,这是相当危险的。我给你解释一下与之相对的弱引用的概念你就明白了
在计算机程序设计中,弱引用与强引用相对,
被弱引用的对象可以在任何时候被回收,而对于强引用来说,只要这个强引用还在,那么对象无法被回收。拿上面的例子说,map 和 a一直是强引用的关系, 在程序结束之前,a 所占的内存空间一直不会被释放。
怎么解决这个问题?
很简单,让 map 的 key 和 map 构成弱引用即可。ES6给我们提供了这样的数据结构,它的名字叫WeakMap,它是一种特殊的Map, 其中的键是弱引用的。其键必须是对象,而值可以是任意的
稍微改造一下即可:
const deepClone = (target, map = new WeakMap()) => {
//...
}
3. 拷贝特殊对象
可继续遍历
对于特殊的对象,我们使用以下方式来鉴别:
Object.prototype.toString.call(obj);
梳理一下对于可遍历对象会有什么结果:
["object Map"]
["object Set"]
["object Array"]
["object Object"]
["object Arguments"]
以这些不同的字符串为依据,我们就可以成功地鉴别这些对象。
const getType = Object.prototype.toString.call(obj);
const canTraverse = {
'[object Map]': true,
'[object Set]': true,
'[object Array]': true,
'[object Object]': true,
'[object Arguments]': true,
};
const deepClone = (target, map = new Map()) => {
if(!isObject(target))
return target;
let type = getType(target);
let cloneTarget;
if(!canTraverse[type]) {
// 处理不能遍历的对象
return;
}else {
// 这波操作相当关键,可以保证对象的原型不丢失!
let ctor = target.prototype;
cloneTarget = new ctor();
}
if(map.get(target))
return target;
map.put(target, true);
if(type === mapTag) {
//处理Map
target.forEach((item, key) => {
cloneTarget.set(deepClone(key), deepClone(item));
})
}
if(type === setTag) {
//处理Set
target.forEach(item => {
target.add(deepClone(item));
})
}
// 处理数组和对象
for (let prop in target) {
if (target.hasOwnProperty(prop)) {
cloneTarget[prop] = deepClone(target[prop]);
}
}
return cloneTarget;
}
不可遍历的对象
const boolTag = '[object Boolean]';
const numberTag = '[object Number]';
const stringTag = '[object String]';
const dateTag = '[object Date]';
const errorTag = '[object Error]';
const regexpTag = '[object RegExp]';
const funcTag = '[object Function]';
对于不可遍历的对象,不同的对象有不同的处理。
const handleRegExp = (target) => {
const { source, flags } = target;
return new target.constructor(source, flags);
}
const handleFunc = (target) => {
// 待会的重点部分
}
const handleNotTraverse = (target, tag) => {
const Ctor = targe.constructor;
switch(tag) {
case boolTag:
case numberTag:
case stringTag:
case errorTag:
case dateTag:
return new Ctor(target);
case regexpTag:
return handleRegExp(target);
case funcTag:
return handleFunc(target);
default:
return new Ctor(target);
}
}
4. 拷贝函数
- 虽然函数也是对象,但是它过于特殊,我们单独把它拿出来拆解。
- 提到函数,在JS种有两种函数,一种是普通函数,另一种是箭头函数。每个普通函数都是
- Function的实例,而箭头函数不是任何类的实例,每次调用都是不一样的引用。那我们只需要
- 处理普通函数的情况,箭头函数直接返回它本身就好了。
那么如何来区分两者呢?
答案是: 利用原型。箭头函数是不存在原型的。
const handleFunc = (func) => {
// 箭头函数直接返回自身
if(!func.prototype) return func;
const bodyReg = /(?<={)(.|\n)+(?=})/m;
const paramReg = /(?<=\().+(?=\)\s+{)/;
const funcString = func.toString();
// 分别匹配 函数参数 和 函数体
const param = paramReg.exec(funcString);
const body = bodyReg.exec(funcString);
if(!body) return null;
if (param) {
const paramArr = param[0].split(',');
return new Function(...paramArr, body[0]);
} else {
return new Function(body[0]);
}
}
5. 完整代码展示
const getType = obj => Object.prototype.toString.call(obj);
const isObject = (target) => (typeof target === 'object' || typeof target === 'function') && target !== null;
const canTraverse = {
'[object Map]': true,
'[object Set]': true,
'[object Array]': true,
'[object Object]': true,
'[object Arguments]': true,
};
const mapTag = '[object Map]';
const setTag = '[object Set]';
const boolTag = '[object Boolean]';
const numberTag = '[object Number]';
const stringTag = '[object String]';
const symbolTag = '[object Symbol]';
const dateTag = '[object Date]';
const errorTag = '[object Error]';
const regexpTag = '[object RegExp]';
const funcTag = '[object Function]';
const handleRegExp = (target) => {
const { source, flags } = target;
return new target.constructor(source, flags);
}
const handleFunc = (func) => {
// 箭头函数直接返回自身
if(!func.prototype) return func;
const bodyReg = /(?<={)(.|\n)+(?=})/m;
const paramReg = /(?<=\().+(?=\)\s+{)/;
const funcString = func.toString();
// 分别匹配 函数参数 和 函数体
const param = paramReg.exec(funcString);
const body = bodyReg.exec(funcString);
if(!body) return null;
if (param) {
const paramArr = param[0].split(',');
return new Function(...paramArr, body[0]);
} else {
return new Function(body[0]);
}
}
const handleNotTraverse = (target, tag) => {
const Ctor = target.constructor;
switch(tag) {
case boolTag:
return new Object(Boolean.prototype.valueOf.call(target));
case numberTag:
return new Object(Number.prototype.valueOf.call(target));
case stringTag:
return new Object(String.prototype.valueOf.call(target));
case symbolTag:
return new Object(Symbol.prototype.valueOf.call(target));
case errorTag:
case dateTag:
return new Ctor(target);
case regexpTag:
return handleRegExp(target);
case funcTag:
return handleFunc(target);
default:
return new Ctor(target);
}
}
const deepClone = (target, map = new WeakMap()) => {
if(!isObject(target))
return target;
let type = getType(target);
let cloneTarget;
if(!canTraverse[type]) {
// 处理不能遍历的对象
return handleNotTraverse(target, type);
}else {
// 这波操作相当关键,可以保证对象的原型不丢失!
let ctor = target.constructor;
cloneTarget = new ctor();
}
if(map.get(target))
return target;
map.set(target, true);
if(type === mapTag) {
//处理Map
target.forEach((item, key) => {
cloneTarget.set(deepClone(key, map), deepClone(item, map));
})
}
if(type === setTag) {
//处理Set
target.forEach(item => {
cloneTarget.add(deepClone(item, map));
})
}
// 处理数组和对象
for (let prop in target) {
if (target.hasOwnProperty(prop)) {
cloneTarget[prop] = deepClone(target[prop], map);
}
}
return cloneTarget;
}
实现map方法
- 回调函数的参数有哪些,返回值如何处理
- 不修改原来的数组
Array.prototype.myMap = function(callback, context){
// 转换类数组
var arr = Array.prototype.slice.call(this),//由于是ES5所以就不用...展开符了
mappedArr = [],
i = 0;
for (; i < arr.length; i++ ){
// 把当前值、索引、当前数组返回去。调用的时候传到函数参数中 [1,2,3,4].map((curr,index,arr))
mappedArr.push(callback.call(context, arr[i], i, this));
}
return mappedArr;
}
实现Array.of方法
Array.of()
方法用于将一组值,转换为数组
- 这个方法的主要目的,是弥补数组构造函数
Array()
的不足。因为参数个数的不同,会导致Array()
的行为有差异。 Array.of()
基本上可以用来替代Array()
或new Array()
,并且不存在由于参数不同而导致的重载。它的行为非常统一
Array.of(3, 11, 8) // [3,11,8]
Array.of(3) // [3]
Array.of(3).length // 1
实现
function ArrayOf(){
return [].slice.call(arguments);
}
参考 前端进阶面试题详细解答
实现一下hash路由
基础的html
代码:
<html>
<style>
html, body {
margin: 0;
height: 100%;
}
ul {
list-style: none;
margin: 0;
padding: 0;
display: flex;
justify-content: center;
}
.box {
width: 100%;
height: 100%;
background-color: red;
}
</style>
<body>
<ul>
<li>
<a href="#red">红色</a>
</li>
<li>
<a href="#green">绿色</a>
</li>
<li>
<a href="#purple">紫色</a>
</li>
</ul>
</body>
</html>
简单实现:
<script>
const box = document.getElementsByClassName('box')[0];
const hash = location.hash
window.onhashchange = function (e) {
const color = hash.slice(1)
box.style.background = color
}
</script>
封装成一个class:
<script>
const box = document.getElementsByClassName('box')[0];
const hash = location.hash
class HashRouter {
constructor (hashStr, cb) {
this.hashStr = hashStr
this.cb = cb
this.watchHash()
this.watch = this.watchHash.bind(this)
window.addEventListener('hashchange', this.watch)
}
watchHash () {
let hash = window.location.hash.slice(1)
this.hashStr = hash
this.cb(hash)
}
}
new HashRouter('red', (color) => {
box.style.background = color
})
</script>
实现apply方法
思路: 利用
this
的上下文特性。apply
其实就是改一下参数的问题
Function.prototype.myApply = function(context = window, args) {
// this-->func context--> obj args--> 传递过来的参数
// 在context上加一个唯一值不影响context上的属性
let key = Symbol('key')
context[key] = this; // context为调用的上下文,this此处为函数,将这个函数作为context的方法
// let args = [...arguments].slice(1) //第一个参数为obj所以删除,伪数组转为数组
let result = context[key](...args); // 这里和call传参不一样
// 清除定义的this 不删除会导致context属性越来越多
delete context[key];
// 返回结果
return result;
}
// 使用
function f(a,b){
console.log(a,b)
console.log(this.name)
}
let obj={
name:'张三'
}
f.myApply(obj,[1,2]) //arguments[1]
实现单例模式
核心要点: 用闭包和
Proxy
属性拦截
function proxy(func) {
let instance;
let handler = {
constructor(target, args) {
if(!instance) {
instance = Reflect.constructor(fun, args);
}
return instance;
}
}
return new Proxy(func, handler);
}
对象数组如何去重
根据每个对象的某一个具体属性来进行去重
const responseList = [
{ id: 1, a: 1 },
{ id: 2, a: 2 },
{ id: 3, a: 3 },
{ id: 1, a: 4 },
];
const result = responseList.reduce((acc, cur) => {
const ids = acc.map(item => item.id);
return ids.includes(cur.id) ? acc : [...acc, cur];
}, []);
console.log(result); // -> [ { id: 1, a: 1}, {id: 2, a: 2}, {id: 3, a: 3} ]
数组去重方法汇总
首先:我知道多少种去重方式
1. 双层 for 循环
function distinct(arr) {
for (let i=0, len=arr.length; i<len; i++) {
for (let j=i+1; j<len; j++) {
if (arr[i] == arr[j]) {
arr.splice(j, 1);
// splice 会改变数组长度,所以要将数组长度 len 和下标 j 减一
len--;
j--;
}
}
}
return arr;
}
思想: 双重
for
循环是比较笨拙的方法,它实现的原理很简单:先定义一个包含原始数组第一个元素的数组,然后遍历原始数组,将原始数组中的每个元素与新数组中的每个元素进行比对,如果不重复则添加到新数组中,最后返回新数组;因为它的时间复杂度是O(n^2)
,如果数组长度很大,效率会很低
2. Array.filter() 加 indexOf/includes
function distinct(a, b) {
let arr = a.concat(b);
return arr.filter((item, index)=> {
//return arr.indexOf(item) === index
return arr.includes(item)
})
}
思想: 利用
indexOf
检测元素在数组中第一次出现的位置是否和元素现在的位置相等,如果不等则说明该元素是重复元素
3. ES6 中的 Set 去重
function distinct(array) {
return Array.from(new Set(array));
}
思想: ES6 提供了新的数据结构 Set,Set 结构的一个特性就是成员值都是唯一的,没有重复的值。
4. reduce 实现对象数组去重复
var resources = [
{ name: "张三", age: "18" },
{ name: "张三", age: "19" },
{ name: "张三", age: "20" },
{ name: "李四", age: "19" },
{ name: "王五", age: "20" },
{ name: "赵六", age: "21" }
]
var temp = {};
resources = resources.reduce((prev, curv) => {
// 如果临时对象中有这个名字,什么都不做
if (temp[curv.name]) {
}else {
// 如果临时对象没有就把这个名字加进去,同时把当前的这个对象加入到prev中
temp[curv.name] = true;
prev.push(curv);
}
return prev
}, []);
console.log("结果", resources);
这种方法是利用高阶函数
reduce
进行去重, 这里只需要注意initialValue
得放一个空数组[],不然没法push
实现reduce方法
- 初始值不传怎么处理
- 回调函数的参数有哪些,返回值如何处理。
Array.prototype.myReduce = function(fn, initialValue) {
var arr = Array.prototype.slice.call(this);
var res, startIndex;
res = initialValue ? initialValue : arr[0]; // 不传默认取数组第一项
startIndex = initialValue ? 0 : 1;
for(var i = startIndex; i < arr.length; i++) {
// 把初始值、当前值、索引、当前数组返回去。调用的时候传到函数参数中 [1,2,3,4].reduce((initVal,curr,index,arr))
res = fn.call(null, res, arr[i], i, this);
}
return res;
}
二叉树深度遍历
// 二叉树深度遍历
class Node {
constructor(element, parent) {
this.parent = parent // 父节点
this.element = element // 当前存储内容
this.left = null // 左子树
this.right = null // 右子树
}
}
class BST {
constructor(compare) {
this.root = null // 树根
this.size = 0 // 树中的节点个数
this.compare = compare || this.compare
}
compare(a,b) {
return a - b
}
add(element) {
if(this.root === null) {
this.root = new Node(element, null)
this.size++
return
}
// 获取根节点 用当前添加的进行判断 放左边还是放右边
let currentNode = this.root
let compare
let parent = null
while (currentNode) {
compare = this.compare(element, currentNode.element)
parent = currentNode // 先将父亲保存起来
// currentNode要不停的变化
if(compare > 0) {
currentNode = currentNode.right
} else if(compare < 0) {
currentNode = currentNode.left
} else {
currentNode.element = element // 相等时 先覆盖后续处理
}
}
let newNode = new Node(element, parent)
if(compare > 0) {
parent.right = newNode
} else if(compare < 0) {
parent.left = newNode
}
this.size++
}
// 前序遍历
preorderTraversal(visitor) {
const traversal = node=>{
if(node === null) return
visitor.visit(node.element)
traversal(node.left)
traversal(node.right)
}
traversal(this.root)
}
// 中序遍历
inorderTraversal(visitor) {
const traversal = node=>{
if(node === null) return
traversal(node.left)
visitor.visit(node.element)
traversal(node.right)
}
traversal(this.root)
}
// 后序遍历
posterorderTraversal(visitor) {
const traversal = node=>{
if(node === null) return
traversal(node.left)
traversal(node.right)
visitor.visit(node.element)
}
traversal(this.root)
}
// 反转二叉树:无论先序、中序、后序、层级都可以反转
invertTree() {
const traversal = node=>{
if(node === null) return
let temp = node.left
node.left = node.right
node.right = temp
traversal(node.left)
traversal(node.right)
}
traversal(this.root)
return this.root
}
}
先序遍历
二叉树的遍历方式
// 测试
var bst = new BST((a,b)=>a.age-b.age) // 模拟sort方法
bst.add({age: 10})
bst.add({age: 8})
bst.add({age:19})
bst.add({age:6})
bst.add({age: 15})
bst.add({age: 22})
bst.add({age: 20})
// 先序遍历
// console.log(bst.preorderTraversal(),'先序遍历')
// console.log(bst.inorderTraversal(),'中序遍历')
// ![](http://img-repo.poetries.top/images/20210522214837.png)
// console.log(bst.posterorderTraversal(),'后序遍历')
// 深度遍历:先序遍历、中序遍历、后续遍历
// 广度遍历:层次遍历(同层级遍历)
// 都可拿到树中的节点
// 使用访问者模式
class Visitor {
constructor() {
this.visit = function (elem) {
elem.age = elem.age*2
}
}
}
// bst.posterorderTraversal({
// visit(elem) {
// elem.age = elem.age*10
// }
// })
// 不能通过索引操作 拿到节点去操作
// bst.posterorderTraversal(new Visitor())
console.log(bst.invertTree(),'反转二叉树')
实现有并行限制的 Promise 调度器
题目描述:JS 实现一个带并发限制的异步调度器 Scheduler
,保证同时运行的任务最多有两个
addTask(1000,"1");
addTask(500,"2");
addTask(300,"3");
addTask(400,"4");
的输出顺序是:2 3 1 4
整个的完整执行流程:
一开始1、2两个任务开始执行
500ms时,2任务执行完毕,输出2,任务3开始执行
800ms时,3任务执行完毕,输出3,任务4开始执行
1000ms时,1任务执行完毕,输出1,此时只剩下4任务在执行
1200ms时,4任务执行完毕,输出4
实现代码如下:
class Scheduler {
constructor(limit) {
this.queue = [];
this.maxCount = limit;
this.runCounts = 0;
}
add(time, order) {
const promiseCreator = () => {
return new Promise((resolve, reject) => {
setTimeout(() => {
console.log(order);
resolve();
}, time);
});
};
this.queue.push(promiseCreator);
}
taskStart() {
for (let i = 0; i < this.maxCount; i++) {
this.request();
}
}
request() {
if (!this.queue || !this.queue.length || this.runCounts >= this.maxCount) {
return;
}
this.runCounts++;
this.queue
.shift()()
.then(() => {
this.runCounts--;
this.request();
});
}
}
const scheduler = new Scheduler(2);
const addTask = (time, order) => {
scheduler.add(time, order);
};
addTask(1000, "1");
addTask(500, "2");
addTask(300, "3");
addTask(400, "4");
scheduler.taskStart();
树形结构转成列表(处理菜单)
[
{
id: 1,
text: '节点1',
parentId: 0,
children: [
{
id:2,
text: '节点1_1',
parentId:1
}
]
}
]
转成
[
{
id: 1,
text: '节点1',
parentId: 0 //这里用0表示为顶级节点
},
{
id: 2,
text: '节点1_1',
parentId: 1 //通过这个字段来确定子父级
}
...
]
实现代码如下:
function treeToList(data) {
let res = [];
const dfs = (tree) => {
tree.forEach((item) => {
if (item.children) {
dfs(item.children);
delete item.children;
}
res.push(item);
});
};
dfs(data);
return res;
}
二叉树搜索
// 二叉搜索树
class Node {
constructor(element, parent) {
this.parent = parent // 父节点
this.element = element // 当前存储内容
this.left = null // 左子树
this.right = null // 右子树
}
}
class BST {
constructor(compare) {
this.root = null // 树根
this.size = 0 // 树中的节点个数
this.compare = compare || this.compare
}
compare(a,b) {
return a - b
}
add(element) {
if(this.root === null) {
this.root = new Node(element, null)
this.size++
return
}
// 获取根节点 用当前添加的进行判断 放左边还是放右边
let currentNode = this.root
let compare
let parent = null
while (currentNode) {
compare = this.compare(element, currentNode.element)
parent = currentNode // 先将父亲保存起来
// currentNode要不停的变化
if(compare > 0) {
currentNode = currentNode.right
} else if(compare < 0) {
currentNode = currentNode.left
} else {
currentNode.element = element // 相等时 先覆盖后续处理
}
}
let newNode = new Node(element, parent)
if(compare > 0) {
parent.right = newNode
} else if(compare < 0) {
parent.left = newNode
}
this.size++
}
}
// 测试
var bst = new BST((a,b)=>b.age-a.age) // 模拟sort方法
bst.add({age: 10})
bst.add({age: 8})
bst.add({age:19})
bst.add({age:20})
bst.add({age: 5})
console.log(bst)
reduce用法汇总
语法
array.reduce(function(total, currentValue, currentIndex, arr), initialValue);
/*
total: 必需。初始值, 或者计算结束后的返回值。
currentValue: 必需。当前元素。
currentIndex: 可选。当前元素的索引;
arr: 可选。当前元素所属的数组对象。
initialValue: 可选。传递给函数的初始值,相当于total的初始值。
*/
reduceRight()
该方法用法与reduce()
其实是相同的,只是遍历的顺序相反,它是从数组的最后一项开始,向前遍历到第一项
1. 数组求和
const arr = [12, 34, 23];
const sum = arr.reduce((total, num) => total + num);
// 设定初始值求和
const arr = [12, 34, 23];
const sum = arr.reduce((total, num) => total + num, 10); // 以10为初始值求和
// 对象数组求和
var result = [
{ subject: 'math', score: 88 },
{ subject: 'chinese', score: 95 },
{ subject: 'english', score: 80 }
];
const sum = result.reduce((accumulator, cur) => accumulator + cur.score, 0);
const sum = result.reduce((accumulator, cur) => accumulator + cur.score, -10); // 总分扣除10分
2. 数组最大值
const a = [23,123,342,12];
const max = a.reduce((pre,next)=>pre>cur?pre:cur,0); // 342
3. 数组转对象
var streams = [{name: '技术', id: 1}, {name: '设计', id: 2}];
var obj = streams.reduce((accumulator, cur) => {accumulator[cur.id] = cur; return accumulator;}, {});
4. 扁平一个二维数组
var arr = [[1, 2, 8], [3, 4, 9], [5, 6, 10]];
var res = arr.reduce((x, y) => x.concat(y), []);
5. 数组去重
实现的基本原理如下:
① 初始化一个空数组
② 将需要去重处理的数组中的第1项在初始化数组中查找,如果找不到(空数组中肯定找不到),就将该项添加到初始化数组中
③ 将需要去重处理的数组中的第2项在初始化数组中查找,如果找不到,就将该项继续添加到初始化数组中
④ ……
⑤ 将需要去重处理的数组中的第n项在初始化数组中查找,如果找不到,就将该项继续添加到初始化数组中
⑥ 将这个初始化数组返回
var newArr = arr.reduce(function (prev, cur) {
prev.indexOf(cur) === -1 && prev.push(cur);
return prev;
},[]);
6. 对象数组去重
const dedup = (data, getKey = () => { }) => {
const dateMap = data.reduce((pre, cur) => {
const key = getKey(cur)
if (!pre[key]) {
pre[key] = cur
}
return pre
}, {})
return Object.values(dateMap)
}
7. 求字符串中字母出现的次数
const str = 'sfhjasfjgfasjuwqrqadqeiqsajsdaiwqdaklldflas-cmxzmnha';
const res = str.split('').reduce((pre,next)=>{
pre[next] ? pre[next]++ : pre[next] = 1
return pre
},{})
// 结果
-: 1
a: 8
c: 1
d: 4
e: 1
f: 4
g: 1
h: 2
i: 2
j: 4
k: 1
l: 3
m: 2
n: 1
q: 5
r: 1
s: 6
u: 1
w: 2
x: 1
z: 1
8. compose函数
redux compose
源码实现
function compose(...funs) {
if (funs.length === 0) {
return arg => arg;
}
if (funs.length === 1) {
return funs[0];
}
return funs.reduce((a, b) => (...arg) => a(b(...arg)))
}
类数组转化为数组的方法
const arrayLike=document.querySelectorAll('div')
// 1.扩展运算符
[...arrayLike]
// 2.Array.from
Array.from(arrayLike)
// 3.Array.prototype.slice
Array.prototype.slice.call(arrayLike)
// 4.Array.apply
Array.apply(null, arrayLike)
// 5.Array.prototype.concat
Array.prototype.concat.apply([], arrayLike)
对象数组列表转成树形结构(处理菜单)
[
{
id: 1,
text: '节点1',
parentId: 0 //这里用0表示为顶级节点
},
{
id: 2,
text: '节点1_1',
parentId: 1 //通过这个字段来确定子父级
}
...
]
转成
[
{
id: 1,
text: '节点1',
parentId: 0,
children: [
{
id:2,
text: '节点1_1',
parentId:1
}
]
}
]
实现代码如下:
function listToTree(data) {
let temp = {};
let treeData = [];
for (let i = 0; i < data.length; i++) {
temp[data[i].id] = data[i];
}
for (let i in temp) {
if (+temp[i].parentId != 0) {
if (!temp[temp[i].parentId].children) {
temp[temp[i].parentId].children = [];
}
temp[temp[i].parentId].children.push(temp[i]);
} else {
treeData.push(temp[i]);
}
}
return treeData;
}
实现findIndex方法
var users = [
{id: 1, name: '张三'},
{id: 2, name: '张三'},
{id: 3, name: '张三'},
{id: 4, name: '张三'}
]
Array.prototype.myFindIndex = function (callback) {
// var callback = function (item, index) { return item.id === 4 }
for (var i = 0; i < this.length; i++) {
if (callback(this[i], i)) {
// 这里返回
return i
}
}
}
var ret = users.myFind(function (item, index) {
return item.id === 2
})
console.log(ret)