Java并发编程(三)

news2024/11/28 18:37:17

临界区

临界资源:一次仅允许一个进程使用的资源成为临界资源

临界区:访问临界资源的代码块

竞态条件:多个线程在临界区内执行,由于代码的执行序列不同而导致结果无法预测,称之为发生了竞态条件

一个程序运行多个线程是没有问题,多个线程读共享资源也没有问题,在多个线程对共享资源读写操作时发生指令交错,就会出现问题

为了避免临界区的竞态条件发生(解决线程安全问题):

  • 阻塞式的解决方案:synchronized,lock
  • 非阻塞式的解决方案:原子变量

管程(monitor):由局部于自己的若干公共变量和所有访问这些公共变量的过程所组成的软件模块,保证同一时刻只有一个进程在管程内活动,即管程内定义的操作在同一时刻只被一个进程调用(由编译器实现)

synchronized:对象锁,保证了临界区内代码的原子性,采用互斥的方式让同一时刻至多只有一个线程能持有对象锁,其它线程获取这个对象锁时会阻塞,保证拥有锁的线程可以安全的执行临界区内的代码,不用担心线程上下文切换

互斥和同步都可以采用 synchronized 关键字来完成,区别:

  • 互斥是保证临界区的竞态条件发生,同一时刻只能有一个线程执行临界区代码
  • 同步是由于线程执行的先后、顺序不同、需要一个线程等待其它线程运行到某个点

性能:

  • 线程安全,性能差
  • 线程不安全性能好,假如开发中不会存在多线程安全问题,建议使用线程不安全的设计类

 

synchronized

使用锁

同步块

锁对象:理论上可以是任意的唯一对象

synchronized 是可重入、不公平的重量级锁

原则上:

  • 锁对象建议使用共享资源
  • 在实例方法中使用 this 作为锁对象,锁住的 this 正好是共享资源
  • 在静态方法中使用类名 .class 字节码作为锁对象,因为静态成员属于类,被所有实例对象共享,所以需要锁住类

同步代码块格式:

synchronized(锁对象){
	// 访问共享资源的核心代码
}

实例:

public class demo {
    static int counter = 0;
    //static修饰,则元素是属于类本身的,不属于对象  ,与类一起加载一次,只有一个
    static final Object room = new Object();
    public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 5000; i++) {
                synchronized (room) {
                    counter++;
                }
            }
        }, "t1");
        Thread t2 = new Thread(() -> {
            for (int i = 0; i < 5000; i++) {
                synchronized (room) {
                    counter--;
                }
            }
        }, "t2");
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println(counter);
    }
}

同步方法

把出现线程安全问题的核心方法锁起来,每次只能一个线程进入访问

synchronized 修饰的方法的不具备继承性,所以子类是线程不安全的,如果子类的方法也被 synchronized 修饰,两个锁对象其实是一把锁,而且是子类对象作为锁

用法:直接给方法加上一个修饰符 synchronized

//同步方法
修饰符 synchronized 返回值类型 方法名(方法参数) { 
	方法体;
}
//同步静态方法
修饰符 static synchronized 返回值类型 方法名(方法参数) { 
	方法体;
}

同步方法底层也是有锁对象的:

  • 如果方法是实例方法:同步方法默认用 this 作为的锁对象

    public synchronized void test() {} //等价于
    public void test() {
        synchronized(this) {}
    }
  • 如果方法是静态方法:同步方法默认用类名 .class 作为的锁对象

    class Test{
    	public synchronized static void test() {}
    }
    //等价于
    class Test{
        public void test() {
            synchronized(Test.class) {}
    	}
    }

线程八锁

线程八锁就是考察 synchronized 锁住的是哪个对象,直接百度搜索相关的实例

说明:主要关注锁住的对象是不是同一个

  • 锁住类对象,所有类的实例的方法都是安全的,类的所有实例都相当于同一把锁
  • 锁住 this 对象,只有在当前实例对象的线程内是安全的,如果有多个实例就不安全

线程不安全:因为锁住的不是同一个对象,线程 1 调用 a 方法锁住的类对象,线程 2 调用 b 方法锁住的 n2 对象,不是同一个对象

class Number{
    public static synchronized void a(){
		Thread.sleep(1000);
        System.out.println("1");
    }
    public synchronized void b() {
        System.out.println("2");
    }
}
public static void main(String[] args) {
    Number n1 = new Number();
    Number n2 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n2.b(); }).start();
}

线程安全:因为 n1 调用 a() 方法,锁住的是类对象,n2 调用 b() 方法,锁住的也是类对象,所以线程安全

class Number{
    public static synchronized void a(){
		Thread.sleep(1000);
        System.out.println("1");
    }
    public static synchronized void b() {
        System.out.println("2");
    }
}
public static void main(String[] args) {
    Number n1 = new Number();
    Number n2 = new Number();
    new Thread(()->{ n1.a(); }).start();
    new Thread(()->{ n2.b(); }).start();
}

 

 

锁原理

Monitor

Monitor 被翻译为监视器或管程

每个 Java 对象都可以关联一个 Monitor 对象,Monitor 也是 class,其实例存储在堆中,如果使用 synchronized 给对象上锁(重量级)之后,该对象头的 Mark Word 中就被设置指向 Monitor 对象的指针,这就是重量级锁

  • Mark Word 结构:最后两位是锁标志位

     

  • 64 位虚拟机 Mark Word:

工作流程:

  • 开始时 Monitor 中 Owner 为 null
  • 当 Thread-2 执行 synchronized(obj) 就会将 Monitor 的所有者 Owner 置为 Thread-2,Monitor 中只能有一个 Owner,obj 对象的 Mark Word 指向 Monitor,把对象原有的 MarkWord 存入线程栈中的锁记录中(轻量级锁部分详解)

  • 在 Thread-2 上锁的过程,Thread-3、Thread-4、Thread-5 也执行 synchronized(obj),就会进入 EntryList BLOCKED(双向链表)
  • Thread-2 执行完同步代码块的内容,根据 obj 对象头中 Monitor 地址寻找,设置 Owner 为空,把线程栈的锁记录中的对象头的值设置回 MarkWord
  • 唤醒 EntryList 中等待的线程来竞争锁,竞争是非公平的,如果这时有新的线程想要获取锁,可能直接就抢占到了,阻塞队列的线程就会继续阻塞
  • WaitSet 中的 Thread-0,是以前获得过锁,但条件不满足进入 WAITING 状态的线程(wait-notify 机制)

注意:

  • synchronized 必须是进入同一个对象的 Monitor 才有上述的效果
  • 不加 synchronized 的对象不会关联监视器,不遵从以上规则

字节码

代码:

public static void main(String[] args) {
    Object lock = new Object();
    synchronized (lock) {
        System.out.println("ok");
    }
}
0: 	new				#2		// new Object
3: 	dup
4: 	invokespecial 	#1 		// invokespecial <init>:()V,非虚方法
7: 	astore_1 				// lock引用 -> lock
8: 	aload_1					// lock (synchronized开始)
9: 	dup						// 一份用来初始化,一份用来引用
10: astore_2 				// lock引用 -> slot 2
11: monitorenter 			// 【将 lock对象 MarkWord 置为 Monitor 指针】
12: getstatic 		#3		// System.out
15: ldc 			#4		// "ok"
17: invokevirtual 	#5 		// invokevirtual println:(Ljava/lang/String;)V
20: aload_2 				// slot 2(lock引用)
21: monitorexit 			// 【将 lock对象 MarkWord 重置, 唤醒 EntryList】
22: goto 30
25: astore_3 				// any -> slot 3
26: aload_2 				// slot 2(lock引用)
27: monitorexit 			// 【将 lock对象 MarkWord 重置, 唤醒 EntryList】
28: aload_3
29: athrow
30: return
Exception table:
    from to target type
      12 22 25 		any
      25 28 25 		any
LineNumberTable: ...
LocalVariableTable:
    Start Length Slot Name Signature
    	0 	31 		0 args [Ljava/lang/String;
    	8 	23 		1 lock Ljava/lang/Object;

说明:

  • 通过异常 try-catch 机制,确保一定会被解锁
  • 方法级别的 synchronized 不会在字节码指令中有所体现

锁升级

升级过程

synchronized 是可重入、不公平的重量级锁,所以可以对其进行优化

无锁 -> 偏向锁 -> 轻量级锁 -> 重量级锁	// 随着竞争的增加,只能锁升级,不能降级


偏向锁

偏向锁的思想是偏向于让第一个获取锁对象的线程,这个线程之后重新获取该锁不再需要同步操作:

  • 当锁对象第一次被线程获得的时候进入偏向状态,标记为 101,同时使用 CAS 操作将线程 ID 记录到 Mark Word。如果 CAS 操作成功,这个线程以后进入这个锁相关的同步块,查看这个线程 ID 是自己的就表示没有竞争,就不需要再进行任何同步操作

  • 当有另外一个线程去尝试获取这个锁对象时,偏向状态就宣告结束,此时撤销偏向(Revoke Bias)后恢复到未锁定或轻量级锁状态

一个对象创建时:

  • 如果开启了偏向锁(默认开启),那么对象创建后,MarkWord 值为 0x05 即最后 3 位为 101,thread、epoch、age 都为 0

  • 偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加 VM 参数 -XX:BiasedLockingStartupDelay=0 来禁用延迟。JDK 8 延迟 4s 开启偏向锁原因:在刚开始执行代码时,会有好多线程来抢锁,如果开偏向锁效率反而降低

  • 当一个对象已经计算过 hashCode,就再也无法进入偏向状态了

  • 添加 VM 参数 -XX:-UseBiasedLocking 禁用偏向锁

撤销偏向锁的状态:

  • 调用对象的 hashCode:偏向锁的对象 MarkWord 中存储的是线程 id,调用 hashCode 导致偏向锁被撤销
  • 当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁
  • 调用 wait/notify,需要申请 Monitor,进入 WaitSet

批量撤销:如果对象被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象的 Thread ID

  • 批量重偏向:当撤销偏向锁阈值超过 20 次后,JVM 会觉得是不是偏向错了,于是在给这些对象加锁时重新偏向至加锁线程

  • 批量撤销:当撤销偏向锁阈值超过 40 次后,JVM 会觉得自己确实偏向错了,根本就不该偏向,于是整个类的所有对象都会变为不可偏向的,新建的对象也是不可偏向的


轻量级锁

一个对象有多个线程要加锁,但加锁的时间是错开的(没有竞争),可以使用轻量级锁来优化,轻量级锁对使用者是透明的(不可见)

可重入锁:线程可以进入任何一个它已经拥有的锁所同步着的代码块,可重入锁最大的作用是避免死锁

轻量级锁在没有竞争时(锁重入时),每次重入仍然需要执行 CAS 操作,Java 6 才引入的偏向锁来优化

锁重入实例:

static final Object obj = new Object();
public static void method1() {
    synchronized( obj ) {
        // 同步块 A
        method2();
    }
}
public static void method2() {
    synchronized( obj ) {
    	// 同步块 B
    }
}
  • 创建锁记录(Lock Record)对象,每个线程的栈帧都会包含一个锁记录的结构,存储锁定对象的 Mark Word

  • 让锁记录中 Object reference 指向锁住的对象,并尝试用 CAS 替换 Object 的 Mark Word,将 Mark Word 的值存入锁记录

  • 如果 CAS 替换成功,对象头中存储了锁记录地址和状态 00(轻量级锁) ,表示由该线程给对象加锁

  • 如果 CAS 失败,有两种情况:

    • 如果是其它线程已经持有了该 Object 的轻量级锁,这时表明有竞争,进入锁膨胀过程
    • 如果是线程自己执行了 synchronized 锁重入,就添加一条 Lock Record 作为重入的计数

  • 当退出 synchronized 代码块(解锁时)

    • 如果有取值为 null 的锁记录,表示有重入,这时重置锁记录,表示重入计数减 1
    • 如果锁记录的值不为 null,这时使用 CAS 将 Mark Word 的值恢复给对象头
      • 成功,则解锁成功
      • 失败,说明轻量级锁进行了锁膨胀或已经升级为重量级锁,进入重量级锁解锁流程

锁膨胀

在尝试加轻量级锁的过程中,CAS 操作无法成功,可能是其它线程为此对象加上了轻量级锁(有竞争),这时需要进行锁膨胀,将轻量级锁变为重量级锁

  • 当 Thread-1 进行轻量级加锁时,Thread-0 已经对该对象加了轻量级锁

  • Thread-1 加轻量级锁失败,进入锁膨胀流程:为 Object 对象申请 Monitor 锁,通过 Object 对象头获取到持锁线程,将 Monitor 的 Owner 置为 Thread-0,将 Object 的对象头指向重量级锁地址,然后自己进入 Monitor 的 EntryList BLOCKED

  • 当 Thread-0 退出同步块解锁时,使用 CAS 将 Mark Word 的值恢复给对象头失败,这时进入重量级解锁流程,即按照 Monitor 地址找到 Monitor 对象,设置 Owner 为 null,唤醒 EntryList 中 BLOCKED 线程


锁优化

自旋锁

重量级锁竞争时,尝试获取锁的线程不会立即阻塞,可以使用自旋(默认 10 次)来进行优化,采用循环的方式去尝试获取锁

注意:

  • 自旋占用 CPU 时间,单核 CPU 自旋就是浪费时间,因为同一时刻只能运行一个线程,多核 CPU 自旋才能发挥优势
  • 自旋失败的线程会进入阻塞状态

优点:不会进入阻塞状态,减少线程上下文切换的消耗

缺点:当自旋的线程越来越多时,会不断的消耗 CPU 资源

自旋锁情况:

  • 自旋成功的情况:

  • 自旋失败的情况:

自旋锁说明:

  • 在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,比较智能
  • Java 7 之后不能控制是否开启自旋功能,由 JVM 控制
//手写自旋锁
public class SpinLock {
    // 泛型装的是Thread,原子引用线程
    AtomicReference<Thread> atomicReference = new AtomicReference<>();

    public void lock() {
        Thread thread = Thread.currentThread();
        System.out.println(thread.getName() + " come in");

        //开始自旋,期望值为null,更新值是当前线程
        while (!atomicReference.compareAndSet(null, thread)) {
            Thread.sleep(1000);
            System.out.println(thread.getName() + " 正在自旋");
        }
        System.out.println(thread.getName() + " 自旋成功");
    }

    public void unlock() {
        Thread thread = Thread.currentThread();

        //线程使用完锁把引用变为null
		atomicReference.compareAndSet(thread, null);
        System.out.println(thread.getName() + " invoke unlock");
    }

    public static void main(String[] args) throws InterruptedException {
        SpinLock lock = new SpinLock();
        new Thread(() -> {
            //占有锁
            lock.lock();
            Thread.sleep(10000); 

            //释放锁
            lock.unlock();
        },"t1").start();

        // 让main线程暂停1秒,使得t1线程,先执行
        Thread.sleep(1000);

        new Thread(() -> {
            lock.lock();
            lock.unlock();
        },"t2").start();
    }
}

锁消除

锁消除是指对于被检测出不可能存在竞争的共享数据的锁进行消除,这是 JVM 即时编译器的优化

锁消除主要是通过逃逸分析来支持,如果堆上的共享数据不可能逃逸出去被其它线程访问到,那么就可以把它们当成私有数据对待,也就可以将它们的锁进行消除(同步消除:JVM 逃逸分析)


锁粗化

对相同对象多次加锁,导致线程发生多次重入,频繁的加锁操作就会导致性能损耗,可以使用锁粗化方式优化

如果虚拟机探测到一串的操作都对同一个对象加锁,将会把加锁的范围扩展(粗化)到整个操作序列的外部

  • 一些看起来没有加锁的代码,其实隐式的加了很多锁:

    public static String concatString(String s1, String s2, String s3) {
        return s1 + s2 + s3;
    }
  • String 是一个不可变的类,编译器会对 String 的拼接自动优化。在 JDK 1.5 之前,转化为 StringBuffer 对象的连续 append() 操作,每个 append() 方法中都有一个同步块

    public static String concatString(String s1, String s2, String s3) {
        StringBuffer sb = new StringBuffer();
        sb.append(s1);
        sb.append(s2);
        sb.append(s3);
        return sb.toString();
    }

扩展到第一个 append() 操作之前直至最后一个 append() 操作之后,只需要加锁一次就可以


多把锁

多把不相干的锁:一间大屋子有两个功能睡觉、学习,互不相干。现在一人要学习,一人要睡觉,如果只用一间屋子(一个对象锁)的话,那么并发度很低

将锁的粒度细分:

  • 好处,是可以增强并发度
  • 坏处,如果一个线程需要同时获得多把锁,就容易发生死锁

解决方法:准备多个对象锁

public static void main(String[] args) {
    BigRoom bigRoom = new BigRoom();
    new Thread(() -> { bigRoom.study(); }).start();
    new Thread(() -> { bigRoom.sleep(); }).start();
}
class BigRoom {
    private final Object studyRoom = new Object();
    private final Object sleepRoom = new Object();

    public void sleep() throws InterruptedException {
        synchronized (sleepRoom) {
            System.out.println("sleeping 2 小时");
            Thread.sleep(2000);
        }
    }

    public void study() throws InterruptedException {
        synchronized (studyRoom) {
            System.out.println("study 1 小时");
            Thread.sleep(1000);
        }
    }
}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/142668.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

日志框架之TLog讲解分析

文章目录1 TLog1.1 引言1.2 简介1.3 TLog操作1.3.1 pom.xml1.3.2 替换logback配置项1.3.3 测试1.4 TLog接入方式1.5 TLog的基本原理1.5.1 日志标签1.5.2 TLogContext1.5.3 TLogRPCHandler1.6 第三方框架的适配1.6.1 异步线程1.6.1.1 一般异步线程1.6.1.2 线程池1.6.2 对RPC框架…

应用程序性能瓶颈中的CPU缓存优化

1.前言 在应用程序中会有大量的对变量的操作&#xff0c;在一般情况下不会导致问题&#xff0c;但在多线程操作共享变量时&#xff0c;不当的操作会产生大量的冗余操作&#xff0c;造成性能的浪费。这篇文章主要从编码方式与逻辑策略对变量从CPU寄存器&#xff0c;CPU缓存&…

Redis面试题整理

认识Redis 什么是Redis? 一种基于内存的数据库&#xff1b;在内存中完成对数据的读写操作&#xff1b;读写速度非常快&#xff1b;常用于缓存&#xff0c;消息队列&#xff0c;分布式锁等场景 Redis和Memcached有什么区别&#xff1f; 共同点 都是基于内存的数据库&#x…

PaddleNLP系列课程二:RocketQA、SKEP(属性级情感分析)、通用信息抽取技术UIE

文章目录一、使用RocketQA搭建端到端的问答系统1.1 问答系统介绍1.2 RocketQA1.2.1 检索式QA VS预训练时代QA1.2.2 RocketQA简介1.3 使用RocketQA搭建问答系统1.3.1 安装1.3.2 使用预置模型完成预测1.3.3 搭建问答系统1.3.3.1 使用Faiss搭建自己的问答系统1.3.3.2 使用Jina搭建…

Leecode---141、142环形链表

141 难度 &#xff1a; easy 个人主要思路是&#xff0c; 循环遍历每个节点&#xff0c; 判断该节点此前是否被访问过。 方法一&#xff1a; 时间8ms &#xff0c; 内存 6.8M , func hasCycle(head *ListNode) bool {var val map[*ListNode]*ListNode{}if head nil {return …

l2逐笔接口数据传输延时高吗?

l2逐笔接口数据传输延时高吗&#xff1f;信息服务商的机器部署在交易所机房内&#xff0c;并通过接口直接向用户转发。按照交易所的规定&#xff0c;每个接收用户均需支付成本十几万&#xff0c;使用l2逐笔接口数据做量化是需要一定门槛。但用户端SDK直连的方式&#xff0c;能最…

C++学习 Day.9(宏和模板简介)

好久没更了&#xff0c;摆还是爽 遗留问题&#xff1a; (16条消息) int&作为函数返回类型-编程语言-CSDN问答&#xff08;已解决&#xff09; 宏&#xff1a; 预处理器编译指令都以#打头 #define&#xff08;宏常量&#xff09;使得预处理器进行文本替换&#xff0c;而不…

Acwing---795.前缀和

前缀和1.题目2.基本思想3.代码实现4.总结1.题目 输入一个长度为n的整数序列。 接下来再输入m个询问&#xff0c;每个询问输入一对l&#xff0c;r。 对于每个询问&#xff0c;输出原序列中从第l个数到第 r 个数的和。 输入格式 第一行包含两个整数n和m。 第二行包含n个整数&am…

一种简洁又不失优雅的工作流:极狐 flow

本文来自&#xff1a; 万金 极狐(GitLab)解决方案专家 杨周 极狐(GitLab) 高级解决方案架构师 极狐(GitLab) 市场部内容团队 我们提到的 Workflow 是指什么&#xff1f; 我们在日常开发工作中提到的 Workflow 通常是指通过 Git&#xff08;版本控制工具&#xff09;实现的分布式…

JavaSE学习day1_03, Java的发展

5. Java语言的扩展知识,重点 5.1 Java语言的发展 java语言前身是oka语言. JDK5&#xff1a;第一个大版本号更新 JDK8&#xff1a;企业中最常用的版本 JDK17&#xff1a;课程中学习的版本 特点&#xff1a;兼容性。 用jdk8编写的代码&#xff0c;用17可以运行 用jdk17编写…

定位bug

1、bug定位常用工具   Firefox——firebug、web developer、 live http headers、http fox IE插件——httpwatch 第三方工具——fiddler 慢速网模拟工具——firefox throttle 1.该选择框使用来选择资源的&#xff0c;当网页被加载的时候向服务器端请求出来的文件包括.htm…

二维码识别率优化实践

本文字数&#xff1a;5939字预计阅读时间&#xff1a;15 分钟概述长按图片识别二维码在移动端是很常见的操作&#xff0c;长按后需要对图片进行识别&#xff0c;并且将二维码中所包含的数据解码出来。在我们的业务场景中&#xff0c;是通过点击图片进入大图预览页面。长按大图预…

项目管理工具dhtmlxGantt甘特图入门教程(六):dhtmlxGantt的扩展完整列表

dhtmlxGantt是用于跨浏览器和跨平台应用程序的功能齐全的Gantt图表&#xff0c;可满足项目管理控件应用程序的所有需求&#xff0c;是最完善的甘特图图表库。 这篇文章给大家讲解dhtmlxGantt的扩展完整列表。 DhtmlxGantt正版试用下载&#xff08;qun&#xff1a;764148812&…

【NI Multisim 14.0原理图环境设置——电路总体设计流程】

目录 序言 &#x1f34a;知识点 一、电路板总体设计流程 &#x1f349; 1.创建电路文件 &#x1f349;2.规划电路界面 &#x1f349;3.放置元器件 &#x1f349;4.连接线路和放置节点 &#x1f349;5.连接仪器仪表 &#x1f349;6. 运行仿真并检查错误 &#x1f349;7…

Dropzone4 for MAC 文件拖拽增强工具

前言 ​​Dropzone for mac是一款文件拖拽操作增强工具&#xff0c;可以让我们把大部分工作都通过拖拽来完成&#xff0c;只需将文件拖拽到菜单栏上的窗口即可。比如保存文本、发送邮件、FTP上传、打开应用等等。提高了用户的工作效率。 下载 Dropzone4 特征 -打开应用程序…

连接格式优化,支持自定义

12月&#xff0c; eKuiper 团队继续专注于 1.8.0 版本新功能的开发。我们重构了外部连接&#xff08;source/sink) 的格式机制&#xff0c;更加清晰地分离了连接、格式和 Schema&#xff0c;同时支持了格式的自定义&#xff1b;受益于新的格式机制&#xff0c;我们大幅完善了文…

echarts中formatter修改鼠标悬浮事件信息操作、echarts地图块、散点区分触发点击事件 只触发散点问题详解

这里写目录标题1、实例2、案例详解1、实例 这次我拿echarts中 地图组合散点图的实例 &#xff01;&#xff01;&#xff01;实现效果&#xff1a;滑到散点显示不同于地图块的信息 及 formatter 提示窗自定义&#xff01;&#xff01;&#xff01; 这个显示项目名称为"文昌…

千锋教育+计算机四级网络-计算机网络学习-01

目录 课程链接 最早的广域网 计算机网络发展阶段 计算机网络的定义与要点 英文单词网络术语与解释 计算机网络分类 广域网技术 城域网 局域网 个人局域网 五种基本的网络拓扑结构​ 误码率 电路交换网特点 分组交换 交换方式 TCP/IP协议族 IP协议介绍 TCP协议介绍 …

OpenCV的solvePnP函数和Dlib估计头部姿势

一、姿势估计概述1、概述在许多应用中&#xff0c;我们需要知道头部是如何相对于相机倾斜的。例如&#xff0c;在虚拟现实应用程序中&#xff0c;可以使用头部的姿势来渲染场景的右视图。在驾驶员辅助系统中&#xff0c;在车辆中观察驾驶员面部的摄像头可以使用头部姿势估计来查…

React(coderwhy)- 06(RTK)

认识ReduxToolkit 认识Redux Toolkit ◼ Redux Toolkit 是官方推荐的编写 Redux 逻辑的方法。  在前面我们学习Redux的时候应该已经发现&#xff0c;redux的编写逻辑过于的繁琐和麻烦。  并且代码通常分拆在多个文件中&#xff08;虽然也可以放到一个文件管理&#xff0c;…