Zookeeper分布式命名服务实战

news2025/1/11 18:09:06

目录

分布式命名服务

分布式API目录

 分布式节点的命名

分布式的ID生成器 

分布式的ID生成器方案:

基于Zookeeper实现分布式ID生成器

基于Zookeeper实现SnowFlakeID算法


分布式命名服务

       命名服务是为系统中的资源提供标识能力。ZooKeeper的命名服务主要是利用ZooKeeper节点的树形分层结构和子节点的顺序维护能力,来为分布式系统中的资源命名。需要用到分布式命名服务的应用场景典型的有:分布式API目录、分布式节点命名、分布式ID生成器。

分布式API目录

       为分布式系统中各种API接口服务的名称、链接地址,提供类似JNDI(Java命名和目录接口)中的文件系统的功能。借助于ZooKeeper的树形分层结构就能提供分布式的API调用功能。著名的Dubbo分布式框架就是应用了ZooKeeper的分布式的JNDI功能。在Dubbo中,使用ZooKeeper维护的全局服务接口API的地址列表。大致的思路为:

服务提供者(Service Provider)
       在启动的时候,向ZooKeeper上的指定节点/dubbo/${serviceName}/providers写入自己的API地址,这个操作就相当于服务的公开。
服务消费者(Consumer)
       启动的时候,订阅节点/dubbo/{serviceName}/providers下的服务提供者的URL地址,获得所有服务提供者的API。 

              


 分布式节点的命名

       一个分布式系统通常会由很多的节点组成,节点的数量不是固定的,而是不断动态变化的。比如说, 当业务不断膨胀和流量洪峰到来时,大量的节点可能会动态加入到集群中。而一旦流量洪峰过去了, 就需要下线大量的节点。这就需要用到分布式节点的命名服务。

可用于生成集群节点的编号的方案: 

1. 使用数据库的自增ID特性,用数据表存储机器的MAC地址或者IP来维护。

2. 使用ZooKeeper持久顺序节点的顺序特性来维护节点的NodeId编号。

在第2种方案中,集群节点命名服务的基本流程是:

       启动节点服务,连接ZooKeeper,检查命名服务根节点是否存在,如果不存在,就创建系统的根节点。 在根节点下创建一个临时顺序ZNode节点,取回ZNode的编号把它作为分布式系统中节点的NODEID。 如果临时节点太多,可以根据需要删除临时顺序ZNode节点。


分布式的ID生成器 

        分布式系统中,分布式ID生成器的使用场景非常多,比如大量的数据记录、大量的系统消息 、大量的请求日志、分布式节点的命名服务等

        传统的数据库自增主键已经不能满足需求。在分布式系统环境中,需要一种全新的唯一ID系统, 这种系统需要满足以下需求:

全局唯一:不能出现重复ID。

高可用:ID生成系统是基础系统,被许多关键系统调用,一旦宕机,就会造成严重影响。


分布式的ID生成器方案:

1. Java的UUID。
2. 分布式缓存Redis生成ID:利用Redis的原子操作INCR和INCRBY,生成全局唯一的ID。
3. Twitter的SnowFlake算法。
4. ZooKeeper生成ID:利用ZooKeeper的顺序节点,生成全局唯一的ID。
5. MongoDB的ObjectId:MongoDB是一个分布式的非结构化NoSQL数据库,每插入一条记录会自动生成全局唯 一的一个“_id”字段值,它是一个12字节的字符串,可以作为分布式系统中全局唯一的ID。


基于Zookeeper实现分布式ID生成器

在ZooKeeper节点的四种类型中,其中有以下两种类型具备自动编号的能力:

PERSISTENT_SEQUENTIAL持久化顺序节点。

EPHEMERAL_SEQUENTIAL临时顺序节点。

       ZooKeeper的每一个节点都会为它的第一级子节点维护一份顺序编号,会记录每个子节点创建的先后 顺序,这个顺序编号是分布式同步的,也是全局唯一的。可以通过创建ZooKeeper的临时顺序节点的方法,生成全局唯一的ID

@Slf4j
public class IDMaker extends CuratorBaseOperations {

    private String createSeqNode(String pathPefix) throws Exception {
        CuratorFramework curatorFramework = getCuratorFramework();
        //创建一个临时顺序节点
        String destPath = curatorFramework.create()
                .creatingParentsIfNeeded()
                .withMode(CreateMode.EPHEMERAL_SEQUENTIAL)
                .forPath(pathPefix);
        return destPath;
    }

    public String  makeId(String path) throws Exception {
        String str = createSeqNode(path);
        if(null != str){
            //获取末尾的序号
            int index = str.lastIndexOf(path);
            if(index>=0){
                index+=path.length();
                return index<=str.length() ? str.substring(index):"";
            }
        }
        return str;
    }
}
@Slf4j
public class IDMakerTest {

    @Test
    public void testMarkId() throws Exception {
        IDMaker idMaker = new IDMaker();
        idMaker.init();
        String pathPrefix = "/idmarker/id-";
        //模拟5个线程创建id
        for(int i=0;i<5;i++){
            new Thread(()->{
                for (int j=0;j<10;j++){
                    String id = null;
                    try {
                        id = idMaker.makeId(pathPrefix);
                        log.info("线程{}第{}次创建id为{}",Thread.currentThread().getName(),
                                j,id);
                    } catch (Exception e) {
                        e.printStackTrace();
                    }
                }
            },"thread"+i).start();
        }
    }
}

执行结果如下 :

 如果是每秒钟要几万、几十万的id,这种方案是不行的,受限于zookeeper的顺序节点写操作。


基于Zookeeper实现SnowFlakeID算法

       Twitter(推特)的SnowFlake算法是一种著名的分布式服务器用户ID生成算法。SnowFlake算法所生成的ID是一个64bit的长整型数字。这个64bit被划分成四个部分,其中后面三个部分分别表示时间戳、工作机器ID、序列号。

SnowFlakeID的四个部分,具体介绍如下:

1. 第一位 占用1 bit,其值始终是0,没有实际作用。 

2. 时间戳 占用41 bit,精确到毫秒,总共可以容纳约69年的时间。 

3. 工作机器id占用10 bit,最多可以容纳1024个节点。

4. 序列号占用12 bit。这个值在同一毫秒同一节点上从0开始不断累加,最多可以累加到4095。 在工作节点达到1024顶配的场景下,SnowFlake算法在同一毫秒最多可以生成的ID数量为: 1024 * 4096 =4194304,在绝大多数并发场景下都是够用的。 

SnowFlake算法的优点:
1. 生成ID时不依赖于数据库,完全在内存生成,高性能和高可用性。
2. 容量大,每秒可生成几百万个ID。
3. ID呈趋势递增,后续插入数据库的索引树时,性能较高。

SnowFlake算法的缺点:

1. 依赖于系统时钟的一致性,如果某台机器的系统时钟回拨了,有可能造成ID冲突,或者ID乱序。 2. 在启动之前,如果这台机器的系统时间回拨过,那么有可能出现ID重复的危险。

基于zookeeper实现雪花算法:

public class SnowflakeIdGenerator {

    /**
     * 单例
     */
    public static SnowflakeIdGenerator instance =
            new SnowflakeIdGenerator();

    /**
     * 初始化单例
     *
     * @param workerId 节点Id,最大8091
     * @return the 单例
     */
    public synchronized void init(long workerId) {
        if (workerId > MAX_WORKER_ID) {
            // zk分配的workerId过大
            throw new IllegalArgumentException("woker Id wrong: " + workerId);
        }
        instance.workerId = workerId;
    }

    private SnowflakeIdGenerator() {

    }

    /**
     * 开始使用该算法的时间为: 2017-01-01 00:00:00
     */
    private static final long START_TIME = 1483200000000L;

    /**
     * worker id 的bit数,最多支持8192个节点
     */
    private static final int WORKER_ID_BITS = 13;

    /**
     * 序列号,支持单节点最高每毫秒的最大ID数1024
     */
    private final static int SEQUENCE_BITS = 10;

    /**
     * 最大的 worker id ,8091
     * -1 的补码(二进制全1)右移13位, 然后取反
     */
    private final static long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);

    /**
     * 最大的序列号,1023
     * -1 的补码(二进制全1)右移10位, 然后取反
     */
    private final static long MAX_SEQUENCE = ~(-1L << SEQUENCE_BITS);

    /**
     * worker 节点编号的移位
     */
    private final static long WORKER_ID_SHIFT = SEQUENCE_BITS;

    /**
     * 时间戳的移位
     */
    private final static long TIMESTAMP_LEFT_SHIFT = WORKER_ID_BITS + SEQUENCE_BITS;

    /**
     * 该项目的worker 节点 id
     */
    private long workerId;

    /**
     * 上次生成ID的时间戳
     */
    private long lastTimestamp = -1L;

    /**
     * 当前毫秒生成的序列
     */
    private long sequence = 0L;

    /**
     * Next id long.
     *
     * @return the nextId
     */
    public Long nextId() {
        return generateId();
    }

    /**
     * 生成唯一id的具体实现
     */
    private synchronized long generateId() {
        long current = System.currentTimeMillis();

        if (current < lastTimestamp) {
            // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过,出现问题返回-1
            return -1;
        }

        if (current == lastTimestamp) {
            // 如果当前生成id的时间还是上次的时间,那么对sequence序列号进行+1
            sequence = (sequence + 1) & MAX_SEQUENCE;

            if (sequence == MAX_SEQUENCE) {
                // 当前毫秒生成的序列数已经大于最大值,那么阻塞到下一个毫秒再获取新的时间戳
                current = this.nextMs(lastTimestamp);
            }
        } else {
            // 当前的时间戳已经是下一个毫秒
            sequence = 0L;
        }

        // 更新上次生成id的时间戳
        lastTimestamp = current;

        // 进行移位操作生成int64的唯一ID

        //时间戳右移动23位
        long time = (current - START_TIME) << TIMESTAMP_LEFT_SHIFT;

        //workerId 右移动10位
        long workerId = this.workerId << WORKER_ID_SHIFT;

        return time | workerId | sequence;
    }

    /**
     * 阻塞到下一个毫秒
     */
    private long nextMs(long timeStamp) {
        long current = System.currentTimeMillis();
        while (current <= timeStamp) {
            current = System.currentTimeMillis();
        }
        return current;
    }

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1423889.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

20240131在ubuntu20.04.6下使用whisper不同模式的比对

20240131在ubuntu20.04.6下使用whisper不同模式的比对 2024/1/31 16:07 首先你要有一张NVIDIA的显卡&#xff0c;比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡&#xff01;】 2、请正确安装好NVIDIA最新的驱动程序和CUDA。可选安装&#xff01; 3、配置whisper…

大华智慧园区综合管理平台 bitmap 任意文件上传漏洞复现

0x01 产品简介 “大华智慧园区综合管理平台”是一款综合管理平台,具备园区运营、资源调配和智能服务等功能。平台意在协助优化园区资源分配,满足多元化的管理需求,同时通过提供智能服务,增强使用体验。 0x02 漏洞概述 大华智慧园区综合管理平台 /emap/webservice/gis/so…

麒麟系统—— openKylin 安装 Nginx

麒麟系统—— openKylin 安装 Nginx 一、准备工作1. 确保麒麟系统 openKylin 已经安装完毕。 二、下载 nginx三、解压与运行解压检查与编译安装编译运行 Nginx 是一款高性能的 HTTP 和反向代理服务器&#xff0c;广泛应用于 Web 服务器领域。本文将分享如何在麒麟系统&#xf…

正则表达式及文本处理三剑客(grep、sed、awk)

目录 一、正则表达式 1、正则表达式的概述 1.1 正则表达式的概念和作用 1.2 正则表达式支持的语言 1.3 正则表达式的优缺点 1.4 正则表达式的分类 1.4.1 基本正则表达式&#xff08;BRE&#xff09;&#xff1a; 1.4.2 扩展正则表达式&#xff08;ERE&#xff09;&…

「数据结构」1.初识泛型

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;Java数据结构 &#x1f387;欢迎点赞收藏加关注哦&#xff01; 初识泛型 &#x1f349;前言&#x1f349;包装类&#x1f34c;装箱&拆箱 &#x1f349;泛型&#x1f34c;擦除机制&#x1f…

爬虫学习笔记-Cookie登录古诗文网

1.导包请求 import requests 2.获取古诗文网登录接口 url https://so.gushiwen.cn/user/login.aspxfromhttp%3a%2f%2fso.gushiwen.cn%2fuser%2fcollect.aspx # 请求头 headers {User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like …

基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道

基于MATLAB实现的OFDM仿真调制解调&#xff0c;BPSK、QPSK、4QAM、16QAM、32QAM&#xff0c;加性高斯白噪声信道、TDL瑞利衰落信道 相关链接 OFDM中的帧&#xff08;frame&#xff09;、符号&#xff08;symbol&#xff09;、子载波&#xff08;subcarriers&#xff09;、导频…

20240127在ubuntu20.04.6下配置whisper

20240131在ubuntu20.04.6下配置whisper 2024/1/31 15:48 首先你要有一张NVIDIA的显卡&#xff0c;比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡&#xff01;】800&#xffe5; 2、请正确安装好NVIDIA最新的驱动程序和CUDA。可选安装&#xff01; 3、配置whispe…

Windows Server 2003 DNS服务器搭建

系列文章目录 目录 系列文章目录 文章目录 前言 一、DNS服务器是什么&#xff1f; 二、配置服务器 1.实验环境搭建 2.服务器搭建 3)安装Web服务器和DNS服务器 4)查看安装是否成功 5)这里直接配置DNS服务器了,Web服务器如何配置我已经发布过了 文章目录 Windows Serve…

(已解决)Properties和Yaml格式互转

工具转换&#xff1a; 推荐转换工具或者下载idea插件yamls yml&#xff0c;properties互转工具&#xff1a;yaml和proper互转工具 插件转换&#xff1a; 下载yaml插件&#xff0c;对需要转换的文件右键选择转换

林浩然与他的“圆”满人生

林浩然与他的“圆”满人生 Lin Haoran and His “Round” Life of Fulfillment 在那遥远的数学王国&#xff0c;有一个名叫林浩然的小哥&#xff0c;他可不是一般的程序员&#xff0c;而是个痴迷于几何之美、生活之趣的大玩家。话说有一天&#xff0c;林浩然正沉浸在毕达哥拉斯…

4秒读取50w行Excel数据

4秒读取50w行Excel数据 文章比较了几种常用的读取Excel的方法&#xff0c;最终发现rust库Calamine的速度最快&#xff0c;可以在4秒内读取50w行excel数据。 原文&#xff1a;Fastest Way to Read Excel in Python&#xff1a;https://hakibenita.com/fast-excel-python 我们在…

【FFmpeg】ffplay 命令行参数 ① ( 设置播放分辨率 | 禁用 音频 / 视频 / 字幕 选项 )

文章目录 一、ffplay 命令行参数 - 设置播放分辨率1、强制设置通用播放分辨率 -x -y 参数2、命令行示例 - 正常播放视频3、命令行示例 - 强制设置播放分辨率4、设置 YUV 播放分辨率 -video_size 和 像素设置 -pixel_format5、全屏播放 -fs 参数 二、ffplay 命令行参数 - 禁用 音…

ElementUI 组件:Container 布局容器

ElementUI安装与使用指南 Container 布局容器 点击下载learnelementuispringboot项目源码 效果图 el-container.vue页面效果图 项目里el-container.vue代码 <script> import PagePath from "/components/PagePath.vue";export default {name: el_conta…

离线使用Element UI和Vue

需要依赖如下&#xff1a; 1.vue.js; 2.index.js(Element UI) 3.index.css(Element UI) 4.element-icons.ttf(Element UI字体) 5.element-icons.woff(Element UI图标) 下载链接如下&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1nGOi0Vm_xExRGmVp6oVLoA 提取…

(自用)learnOpenGL学习总结-高级OpenGL-帧缓冲Framebuffers

我们在之前使用了很多缓冲了&#xff1a;颜色缓冲、深度缓冲、模板缓冲。这些缓冲结合起来叫做帧缓冲&#xff0c; 其实也能从名字理解&#xff0c;每一帧屏幕都需要不断更新画面&#xff0c;对应的缓冲也需要更新。 不过上面这些都是在默认的缓冲里面做的&#xff0c;现在我…

【ARM Trace32(劳特巴赫) 使用介绍 3.1 -- 不 attach core 直接访问 memory】

文章目录 背景介绍背景介绍 在使用 trace32 时在有些场景需要不 attach core 然后去读写 memory,比如在某些情况下 core 已经挂死连接不上了,这个时候需要dump内存,这个时候需要怎做呢? print "test for memory access directly";SYStem.OPTION WAITRESET OF…

【Java 数据结构】优先级队列(堆)

优先级队列&#xff08;堆&#xff09; 1. 优先级队列1.1 概念 2. 优先级队列的模拟实现2.1 堆的概念2.2 堆的存储方式2.3 堆的创建2.3.1 堆向下调整2.3.2 堆的创建2.3.3 建堆的时间复杂度 2.4 堆的插入与删除2.4.1 堆的插入2.4.2 堆的删除 2.5 用堆模拟实现优先级队列 3.常用…

streampark+flink一键整库或多表同步mysql到doris实战

streamparkflink一键整库或多表同步mysql到doris实战&#xff0c;此应用一旦推广起来&#xff0c;那么数据实时异构时&#xff0c;不仅可以减少对数据库的查询压力&#xff0c;还可以减少数据同步时的至少50%的成本&#xff0c;还可以减少30%的存储成本&#xff1b; streampar…

win11安装wsl作为linux子系统并当作服务器

wsl安装 打开控制面板&#xff0c;找到启用或关闭windows功能 开启windows虚拟机监控平台和适用于Linux的Windows子系统&#xff0c;重启电脑。 打开microsoft store搜索ubuntu&#xff0c;找到合适的版本下载安装 输入wsl -l如下所示&#xff0c;即为安装成功。 安装过程比较…