解密数据清洗,SQL中的数据分析

news2024/11/24 16:26:04

大家好,数据库表中的数据经常会很杂乱。数据可能包含缺失值、重复记录、异常值、不一致的数据输入等,在使用SQL进行分析之前清洗数据是非常重要的。

当学习SQL时,可以随意地创建数据库表,更改它们,根据需要更新和删除记录。但在实际操作中,几乎从不会这样,因为可能没有权限更改表、更新和删除记录。但如果有数据库的读取权限,可以运行大量的SELECT查询。

本文将创建一个数据库表,在其中填充记录,并了解如何使用SQL清洗数据。

创建一个名为employees的员工表,如下所示:

-- 创建employees表
CREATE TABLE employees (
 employee_id INT PRIMARY KEY,
 employee_name VARCHAR(50),
 salary DECIMAL(10, 2),
 hire_date VARCHAR(20),
 department VARCHAR(50)
);

接下来,向表中插入一些虚构的样本记录:

-- 插入20个样本记录
INSERT INTO employees (employee_id, employee_name, salary, hire_date, department) VALUES
(1, 'Amy West', 60000.00, '2021-01-15', 'HR'),
(2, 'Ivy Lee', 75000.50, '2020-05-22', 'Sales'),
(3, 'joe smith', 80000.75, '2019-08-10', 'Marketing'), 
(4, 'John White', 90000.00, '2020-11-05', 'Finance'),
(5, 'Jane Hill', 55000.25, '2022-02-28', 'IT'),
(6, 'Dave West', 72000.00, '2020-03-12', 'Marketing'),
(7, 'Fanny Lee', 85000.50, '2018-06-25', 'Sales'),
(8, 'Amy Smith', 95000.25, '2019-11-30', 'Finance'),
(9, 'Ivy Hill', 62000.75, '2021-07-18', 'IT'),
(10, 'Joe White', 78000.00, '2022-04-05', 'Marketing'),
(11, 'John Lee', 68000.50, '2018-12-10', 'HR'),
(12, 'Jane West', 89000.25, '2017-09-15', 'Sales'),
(13, 'Dave Smith', 60000.75, '2022-01-08', NULL),
(14, 'Fanny White', 72000.00, '2019-04-22', 'IT'),
(15, 'Amy Hill', 84000.50, '2020-08-17', 'Marketing'),
(16, 'Ivy West', 92000.25, '2021-02-03', 'Finance'),
(17, 'Joe Lee', 58000.75, '2018-05-28', 'IT'),
(18, 'John Smith', 77000.00, '2019-10-10', 'HR'),
(19, 'Jane Hill', 81000.50, '2022-03-15', 'Sales'),
(20, 'Dave White', 70000.25, '2017-12-20', 'Marketing');

这里使用了一小部分名字和姓氏作为样本,并为记录构建了姓名字段。

注意:本教程中的所有查询都是针对MySQL的,但可以自由选择使用喜欢的关系型数据库管理系统(RDBMS)。

1. 缺失值

数据记录中的缺失值总是一个问题,因此必须对其进行相应的处理。

一种简单的方法是删除包含一个或多个字段缺失值的所有记录。然而,除非确定没有其他更好的处理缺失值的方法,否则不应该这样做。

employees表中,可以看到department列中有一个NULL值(参见employee_id13的行),表示该字段缺失:

SELECT * FROM employees;

图片

可以使用COALESCE()函数将NULL值替换为Unknown字符串:

SELECT
 employee_id,
 employee_name,
 salary,
 hire_date,
 COALESCE(department, 'Unknown') AS department
FROM employees;

运行上述查询应该会给出以下结果:

图片

2. 重复记录

数据库表中的重复记录可能会扭曲分析结果。在数据库表中选择了employee_id作为主键,因此在employee_data表中不会有重复的员工记录。

仍然可以使用SELECT DISTINCT语句:

SELECT DISTINCT * FROM employees;

如预期所示,结果集包含了所有的20条记录:

图片

3. 数据类型转换

可以注意到,hire_date列目前是VARCHAR类型,而不是日期类型。为了在处理日期时更方便,使用STR_TO_DATE()函数,如下所示:

SELECT
 employee_id,
 employee_name,
 salary,
 STR_TO_DATE(hire_date, '%Y-%m-%d') AS hire_date,
 department
FROM employees;

在这里只选择了hire_date列,而没有对日期值执行任何操作。因此,查询的输出结果应与前一个查询的结果相同。

如果想执行诸如给值添加偏移日期之类的操作,那么该函数可能会有所帮助。

4. 异常值

一个或多个数值字段中的异常值可能会影响分析结果,因此应该检查并清除异常值,以过滤掉不相关的数据。判断哪些值构成异常值需要领域知识,还需要利用领域知识和历史数据。

假设知道salary列的上限为100000,因此,salary列中的任何条目最多只能是100000,而大于此值的条目则是异常值。

可以通过运行以下查询来检查这样的记录:

SELECT *
FROM employees
WHERE salary > 100000;

如图所示,salary列中的所有条目都是有效的。因此结果集为空:

图片

5. 数据输入不一致

数据输入和格式不一致的情况很常见,尤其是在日期和字符串列中。

employees表中,可以看到员工joe smith对应的记录不是以标题大小写形式显示的。

但是,为了保持一致性,选择所有以标题大小写格式显示的姓名。需要将CONCAT()函数与UPPER()SUBSTRING()函数结合使用,如下所示:

SELECT
 employee_id,
 CONCAT(
     UPPER(SUBSTRING(employee_name, 1, 1)), -- Capitalize the first letter of the first name
     LOWER(SUBSTRING(employee_name, 2, LOCATE(' ', employee_name) - 2)), -- Make the rest of the first name lowercase
     ' ',
     UPPER(SUBSTRING(employee_name, LOCATE(' ', employee_name) + 1, 1)), -- Capitalize the first letter of the last name
     LOWER(SUBSTRING(employee_name, LOCATE(' ', employee_name) + 2)) -- Make the rest of the last name lowercase
 ) AS employee_name_title_case,
 salary,
 hire_date,
 department
FROM employees;

图片

6. 验证范围

在谈论异常值时,希望对salary列设置上限为100000,并将任何超过100000的薪资条目视为异常值。但同样也不能在salary列中有任何负值。因此,可以运行以下查询来验证所有员工记录的salary列值是否都在0和100000之间:

SELECT
 employee_id,
 employee_name,
 salary,
 hire_date,
 department
FROM employees
WHERE salary < 0 OR salary > 100000;

如图所示,salary列值都在0和100000之间。因此结果集为空:

图片

7. 派生新列

派生新列本质上并不是数据清洗的步骤。在实际操作中,可能需要使用现有列派生出对分析更有帮助的新列。

例如,员工表包含一个hire_date列。更有帮助的字段可能是一个years_of_service列,表示员工在公司任职的年限。

以下查询会计算当前年份与hire_date中年份值的差值,从而计算出years_of_service

SELECT
 employee_id,
 employee_name,
 salary,
 hire_date,
 department,
 YEAR(CURDATE()) - YEAR(hire_date) AS years_of_service
FROM employees;

应该会看到以下输出:

图片

与我们运行的其他查询一样,这不会修改原始表。要向原始表中添加新列,需要拥有ALTER数据库表的权限。

综上,希望大家理解相关的数据清洗任务如何提高数据质量并促进更相关的分析,同时学习如何检查缺失值、重复记录、不一致的格式、异常值等。可以尝试创建自己的关系型数据库表,并运行一些查询来执行常见的数据清洗任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1421916.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

云原生 k8s 可能使用到的端口整理【不定期更新】

k8s 因为涉及到的组件太多了&#xff0c;所以端口有很多&#xff0c;这里整理了日常所接触的接口&#xff0c;后续有新的再更新。 如果是通过公网 IP 进行安装的时候需要根据实际情况有选择的进行放开&#xff1b;一般只有云厂商会提供公网 IP 访问&#xff0c;自建的话不建议 …

GrayLog踩坑历险记

背景 GrayLog作为ELK的替代产品&#xff0c;是新生代的日志采集框架。在一个采集节点日志的需求中&#xff0c;因为节点很多&#xff0c;产生的日志也很多&#xff0c;因此尝试了使用GrayLog进行日志的采集。下面记录一下使用GrayLog中遇到的坑和解决方案。 一、部署与启动 …

基于YOLOv8的船舶目标检测系统(Python源码+Pyqt6界面+数据集)

博主简介 AI小怪兽&#xff0c;YOLO骨灰级玩家&#xff0c;1&#xff09;YOLOv5、v7、v8优化创新&#xff0c;轻松涨点和模型轻量化&#xff1b;2&#xff09;目标检测、语义分割、OCR、分类等技术孵化&#xff0c;赋能智能制造&#xff0c;工业项目落地经验丰富&#xff1b; …

鸿蒙南向开发——GN快速入门指南

运行GN(Generate Ninja) 运行gn&#xff0c;你只需从命令行运行gn&#xff0c;对于大型项目&#xff0c;GN是与源码一起的。 对于Chromium和基于Chromium的项目&#xff0c;有一个在depot_tools中的脚本&#xff0c;它需要加入到你的PATH环境变量中。该脚本将在包含当前目录的…

空间数据分析和空间统计工具库PySAL入门

空间数据分析是指利用地理信息系统(GIS)技术和空间统计学等方法&#xff0c;对空间数据进行处理、分析和可视化&#xff0c;以揭示数据之间的空间关系和趋势性&#xff0c;为决策者提供有效的空间决策支持。空间数据分析已经被广泛运用在城市规划、交通管理、环境保护、农业种植…

主从数据库MySQL服务重启步骤与注意事项

主从数据库MySQL服务重启步骤与注意事项 实验环境&#xff1a; 172.20.26.34 &#xff08;主应用服务器&#xff09; 172.20.26.26 &#xff08;备应用服务器&#xff09; 172.20.26.37 &#xff08;主库服务器&#xff09; 172.20.26.38 &#xff08;从库服务器&…

Spring Boot 中使用 Spring MVC基础

Spring MVC基础 一、控制器 controller1.定制控制器的方法&#xff08;1&#xff09;接收请求&#xff08;2&#xff09;接收请求参数&#xff08;3&#xff09;返回值 二、模型 Modle三、视图 View四、总结 Spring MVC 是非常著名的 Web 应用框架&#xff0c;现在的大多数 Web…

无需 Root 卸载手机预装软件,精简过的老年机又行了

基础准备 准备目标手机、USB 数据线、以及一台电脑。手机 USB 连接电脑&#xff0c;开发者选项中打开 USB 调试。&#xff08;开发者选项默认隐藏&#xff0c;需要在关于手机中多次点击版本号才能调出&#xff09;。 安装手机驱动&#xff0c;下载安装 ADB 工具包。 开始操作…

Excel得到JSON串

很多时候业务都需要做一种从Excel读取或者导入数据的功能&#xff0c;这在cs程序比较简单&#xff0c;在BS程序上如果封装不好的话那么写起来还是很费劲的&#xff0c;这次封装Excel读取操作。 先看使用 对&#xff0c;你没有看错&#xff0c;就是这么简单。 封装 基础设计…

TensorFlow2实战-系列教程11:RNN文本分类3

&#x1f9e1;&#x1f49b;&#x1f49a;TensorFlow2实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Jupyter Notebook中进行 本篇文章配套的代码资源已经上传 6、构建训练数据 所有的输入样本必须都是相同shape&#xff08;文本长度&#xff0c;…

Prometheus基于pod部署

1、kube-api的自动发现&#xff1a;Prometheus的容器化部署&#xff08;生产中都是pod部署&#xff09; 2、部署export &#xff08;1&#xff09;创建目录 &#xff08;2&#xff09;创建命名空间 &#xff08;3&#xff09;部署node-export ①9100端口被占用&#xff0c;停…

useEffect的第二个参数

目录 1、第一个参数&#xff1a; 2、第二个参数&#xff1a; 2.1 不传值&#xff1a;无限循环 2.2 空数组作为依赖&#xff1a;执行一次 2.3 基本类型作为依赖&#xff1a;无限循环 2.4 引用类型 2.4.1 数组作为依赖&#xff1a;无限循环 2.4.2 函数作为依赖&#…

添加了gateway之后远程调用失败

前端提示500&#xff0c;后端提示[400 ] during [GET] to [http://userservice/user/1] 原因是这个&#xff0c;因为在请求地址写了两个参数&#xff0c;实际上只传了一个参数 解决方案&#xff1a;加上(required false)并重启所有相关服务

Redis(十)SpringBoot集成Redis

文章目录 连接单机mvnYMLController.javaRedisConfig.java 连接集群YML问题复现 RedisTemplate方式 连接单机 mvn <!--Redis--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</art…

Qt应用开发(安卓篇)——调用ioctl、socket等C函数

一、前言 在 Qt for Android 中没办法像在嵌入式linux中一样直接使用 ioctl 等底层函数&#xff0c;这是因为因为 Android 平台的安全性和权限限制。 在 Android 中&#xff0c;访问设备硬件和系统资源需要特定的权限&#xff0c;并且需要通过 Android 系统提供的 API 来进行。…

Java链表(2)

&#x1f435;本篇文章将对双向链表进行讲解&#xff0c;模拟实现双向链表的常用方法 一、什么是双向链表 双向链表在指针域上相较于单链表&#xff0c;每一个节点多了一个指向前驱节点的引用prev以及多了指向最后一个节点的引用last&#xff1a; 二、双向链表的模拟实现 首先…

深度学习:机器智能的革命性突破与未来挑战

深度学习&#xff1a;机器智能的革命性突破与未来挑战 深度学习是人工智能领域的一个重要分支&#xff0c;它利用神经网络模拟人类大脑的学习过程&#xff0c;通过大量数据训练模型&#xff0c;使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来&#xff0c;深度学…

忍不了,客户让我在一个接口里兼容多种业务逻辑

分享是最有效的学习方式。 博客&#xff1a;https://blog.ktdaddy.com/ 老猫的设计模式专栏已经偷偷发车了。 不甘愿做crud boy&#xff1f;看了好几遍的设计模式还记不住&#xff1f;那就不要刻意记了&#xff0c;跟上老猫的步伐&#xff0c;在一个个有趣的职场故事中领悟设计…

一文掌握SpringBoot注解之@Component 知识文集(8)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

山体滑坡在线安全监测预警系统(解决方案)

在近年来&#xff0c;随着全球气候变化的影响&#xff0c;山体滑坡等自然灾害频发&#xff0c;给人们的生命财产安全带来了严重威胁。为了有效预防和减少山体滑坡带来的危害&#xff0c;许多地方开始在山上安装山体滑坡在线安全监测预警系统&#xff08;解决方案&#xff09;。…