windows上使用anconda安装tensorrt环境

news2024/9/22 15:30:43

windows上使用anconda安装tensorrt环境

    • 1 安装tensorrt
      • 1.1 下载最新的稳定的tensorrt 8.6.1(tensorrt对应的cuda、cudnn等版本是参考链接4)
      • 1.2 将tensorrt添加到环境变量
      • 1.3 安装tensorrt依赖
      • 1.4 安装Pycuda
      • 1.5 安装pytorch
    • 2 测试
      • 2.1 测试TensorRT 样例(这个测试主要来源于参考链接1)
      • 2.2 测试trtexec是否可以使用(这个测试主要来源于参考链接2)
        • 2.2.1 生成pytorch模型
        • 2.2.2 将pytorch模型转化为onnx
        • 2.2.3 将ONNX格式转成TensorRT格式
        • 2.2.4 测试生成的tensorrt模型
    • 3 容易出现的问题
      • 3.1 cuda 和 tensorrt 版本不匹配的问题
      • 3.2 出现编译和加载时不是同一个cuda cuBLAS/cuBLAS
    • 4 参考链接

本次使用的window环境是win 11,windows环境安装cuda(cuda版本为11.6.2)和cudnn(cudnn版本为8.8.0其实应该下载8.9.0tensorrt 8.6.1对应的cudnn版本是8.9.0,如下图1),anconda的安装就不用介绍了,如果不会安装,可以参考这篇文章
在这里插入图片描述 图 1 图1 1

1 安装tensorrt

1.1 下载最新的稳定的tensorrt 8.6.1(tensorrt对应的cuda、cudnn等版本是参考链接4)

从nvidia官方文件中可以看出,在windows上安装tensorrt只能通过Zip File Installation这个安装方式来进行安装。

  • 首先前往tensorrt官网下载,登录会出现不同版本的tensorrt资源,如图2,点击TensorRT 8
    在这里插入图片描述 图 2 图2 2
  • 然后,直接下载下图3中的TensorRT 8.6 GA for Windows 10 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7 and 11.8 ZIP Package
    在这里插入图片描述 图 3 图3 3

1.2 将tensorrt添加到环境变量

  • 下载完毕后,将其解压,并且进入lib子文件夹,如下图4所示,将路径D:\TensorRT-8.6.1.6\lib添加到系统环境变量中。
    在这里插入图片描述 图 4 图4 4

1.3 安装tensorrt依赖

创建一个anconda环境,python版本为python==3.10.12

conda create -n tensorrt python==3.10.12

激活环境

activate tensorrt

进入刚才解压后的TensorRT文件夹内的python子目录,根据python版本选择好对用的whl文件,如下图5所示,并执行下面代码

pip install D:\TensorRT-8.6.1.6\python\tensorrt-8.6.1-cp310-none-win_amd64.whl

在这里插入图片描述 图 5 图5 5上面代码执行结果如下所示

C:\Users\Administrator>conda create -n tensorrt python==3.10.12
Collecting package metadata (current_repodata.json): done
Solving environment: unsuccessful attempt using repodata from current_repodata.json, retrying with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done

1.4 安装Pycuda

前往下载Pycuda的网站,找到Pycuda,并点击Pycuda,就会跳到下图6下载Pycuda版本的网站,然后下载pycuda‑2022.1+cuda116‑cp310‑cp310‑win_amd64.whl
在这里插入图片描述 图 6 图6 6进入tensorrt的conda虚拟环境,输入以下代码指令安装Pycuda

pip install C:\Users\Administrator\Downloads\pycuda‑2022.1+cuda116‑cp310‑cp310‑win_amd64.whl

执行结果如下所示,就代表成功了

(tensorrt) C:\Users\Administrator>pip install C:\Users\Administrator\Downloads\pycuda-2022.1+cuda116-cp310-cp310-win_amd64.whl
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Processing c:\users\administrator\downloads\pycuda-2022.1+cuda116-cp310-cp310-win_amd64.whl
Collecting pytools>=2011.2 (from pycuda==2022.1+cuda116)
  Downloading pytools-2023.1.1-py2.py3-none-any.whl.metadata (2.7 kB)
Collecting appdirs>=1.4.0 (from pycuda==2022.1+cuda116)
  Downloading appdirs-1.4.4-py2.py3-none-any.whl (9.6 kB)
Collecting mako (from pycuda==2022.1+cuda116)
  Downloading Mako-1.3.0-py3-none-any.whl.metadata (2.9 kB)
Requirement already satisfied: platformdirs>=2.2.0 in c:\users\administrator\appdata\roaming\python\python310\site-packages (from pytools>=2011.2->pycuda==2022.1+cuda116) (4.1.0)
Collecting typing-extensions>=4.0 (from pytools>=2011.2->pycuda==2022.1+cuda116)
  Downloading typing_extensions-4.9.0-py3-none-any.whl.metadata (3.0 kB)
Collecting MarkupSafe>=0.9.2 (from mako->pycuda==2022.1+cuda116)
  Downloading MarkupSafe-2.1.4-cp310-cp310-win_amd64.whl.metadata (3.1 kB)
Downloading pytools-2023.1.1-py2.py3-none-any.whl (70 kB)
   ---------------------------------------- 70.6/70.6 kB 256.7 kB/s eta 0:00:00
Downloading Mako-1.3.0-py3-none-any.whl (78 kB)
   ---------------------------------------- 78.6/78.6 kB 1.5 MB/s eta 0:00:00
Downloading MarkupSafe-2.1.4-cp310-cp310-win_amd64.whl (17 kB)
Downloading typing_extensions-4.9.0-py3-none-any.whl (32 kB)
Installing collected packages: appdirs, typing-extensions, MarkupSafe, pytools, mako, pycuda
Successfully installed MarkupSafe-2.1.4 appdirs-1.4.4 mako-1.3.0 pycuda-2022.1+cuda116 pytools-2023.1.1 typing-extensions-4.9.0

1.5 安装pytorch

进入tensorrt虚拟环境中,安装pytorch,注意这个安装pytorch,一定要使用pip的方式安装,不要使用conda的方式安装

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116

安装成功后,可以查看pytorch的cuda是不是可以用

import torch
torch.cuda.is_available()  # 为True则可以用

2 测试

2.1 测试TensorRT 样例(这个测试主要来源于参考链接1)

tensorrt官方提供了可供测试的样例,进入刚才下载好的tensorrt文件夹下面的samples\python\network_api_pytorch_mnist目录下,这里我们选择一个手写数字识别的示例,如下图7所示。
在这里插入图片描述 图 7 图7 7拷贝路径,在tensorrt的虚拟环境下,cd 此路径,然后输入如下指令

python sample.py

执行结果如下,就代表成功了

(tensorrt) D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist>python sample.py
Train Epoch: 1 [0/60000 (0%)]   Loss: 2.292776
Train Epoch: 1 [6400/60000 (11%)]       Loss: 0.694761
Train Epoch: 1 [12800/60000 (21%)]      Loss: 0.316812
Train Epoch: 1 [19200/60000 (32%)]      Loss: 0.101704
Train Epoch: 1 [25600/60000 (43%)]      Loss: 0.087654
Train Epoch: 1 [32000/60000 (53%)]      Loss: 0.230672
Train Epoch: 1 [38400/60000 (64%)]      Loss: 0.189763
Train Epoch: 1 [44800/60000 (75%)]      Loss: 0.157570
Train Epoch: 1 [51200/60000 (85%)]      Loss: 0.043530
Train Epoch: 1 [57600/60000 (96%)]      Loss: 0.107672

Test set: Average loss: 0.0927, Accuracy: 9732/10000 (97%)

Train Epoch: 2 [0/60000 (0%)]   Loss: 0.049581
Train Epoch: 2 [6400/60000 (11%)]       Loss: 0.063095
Train Epoch: 2 [12800/60000 (21%)]      Loss: 0.086241
Train Epoch: 2 [19200/60000 (32%)]      Loss: 0.100145
Train Epoch: 2 [25600/60000 (43%)]      Loss: 0.087662
Train Epoch: 2 [32000/60000 (53%)]      Loss: 0.064293
Train Epoch: 2 [38400/60000 (64%)]      Loss: 0.053872
Train Epoch: 2 [44800/60000 (75%)]      Loss: 0.153787
Train Epoch: 2 [51200/60000 (85%)]      Loss: 0.065774
Train Epoch: 2 [57600/60000 (96%)]      Loss: 0.067333

Test set: Average loss: 0.0520, Accuracy: 9835/10000 (98%)

[01/26/2024-20:43:07] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:112: DeprecationWarning: Use set_memory_pool_limit instead.
  config.max_workspace_size = common.GiB(1)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:75: DeprecationWarning: Use add_convolution_nd instead.
  conv1 = network.add_convolution(
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:78: DeprecationWarning: Use stride_nd instead.
  conv1.stride = (1, 1)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:80: DeprecationWarning: Use add_pooling_nd instead.
  pool1 = network.add_pooling(input=conv1.get_output(0), type=trt.PoolingType.MAX, window_size=(2, 2))
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:81: DeprecationWarning: Use stride_nd instead.
  pool1.stride = (2, 2)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:85: DeprecationWarning: Use add_convolution_nd instead.
  conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:86: DeprecationWarning: Use stride_nd instead.
  conv2.stride = (1, 1)
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:88: DeprecationWarning: Use add_pooling_nd instead.
  pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
D:\TensorRT-8.6.1.6\samples\python\network_api_pytorch_mnist\sample.py:89: DeprecationWarning: Use stride_nd instead.
  pool2.stride = (2, 2)
[01/26/2024-20:43:11] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
Test Case: 2
Prediction: 2

2.2 测试trtexec是否可以使用(这个测试主要来源于参考链接2)

2.2.1 生成pytorch模型

使用pytorch官方提供的resnet34训练flower数据集,得到pytorch模型,代码来源https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_classification/Test5_resnet,flower数据集的来源也是这个链接的上一文件的readme.md,训练完成后,会得到resNet34.pth,如下图8所示
在这里插入图片描述 图 8 图8 8

2.2.2 将pytorch模型转化为onnx

这里就是以Pytorch官方提供的ResNet34为例(也就是上面代码训练好的resNet34.pth),直接从torchvision中实例化ResNet34并载入自己在flower_photos数据集上训练好的权重,然后在转成ONNX格式,示例代码如下:

import torch
import torch.onnx
import onnx
import onnxruntime
import numpy as np
from torchvision.models import resnet34

device = torch.device("cpu")


def to_numpy(tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()


def main():
    weights_path = "resNet34.pth"
    onnx_file_name = "resnet34.onnx"
    batch_size = 1
    img_h = 224
    img_w = 224
    img_channel = 3

    # create model and load pretrain weights
    model = resnet34(pretrained=False, num_classes=5)
    model.load_state_dict(torch.load(weights_path, map_location='cpu'))

    model.eval()
    # input to the model
    # [batch, channel, height, width]
    x = torch.rand(batch_size, img_channel, img_h, img_w, requires_grad=True)
    torch_out = model(x)

    # export the model
    torch.onnx.export(model,             # model being run
                      x,                 # model input (or a tuple for multiple inputs)
                      onnx_file_name,    # where to save the model (can be a file or file-like object)
                      input_names=["input"],
                      output_names=["output"],
                      verbose=False)

    # check onnx model
    onnx_model = onnx.load(onnx_file_name)
    onnx.checker.check_model(onnx_model)

    ort_session = onnxruntime.InferenceSession(onnx_file_name)

    # compute ONNX Runtime output prediction
    ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
    ort_outs = ort_session.run(None, ort_inputs)

    # compare ONNX Runtime and Pytorch results
    # assert_allclose: Raises an AssertionError if two objects are not equal up to desired tolerance.
    np.testing.assert_allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)
    print("Exported model has been tested with ONNXRuntime, and the result looks good!")


if __name__ == '__main__':
    main()

在运行上面代码之前,还得在tensorrt虚拟环境中安装onnx(onnx==1.12.0)和onnxruntime(onnxruntime==1.12.0)(onnx和onnxruntime的版本对应关系可以参考这个链接,当然如果要查看最新的版本的,可以直接google哦)

pip install onnx==1.12.0
pip install onnxruntime==1.12.0

注意,这里将Pytorch模型转成ONNX后,又利用ONNXRUNTIME载入导出的模型,然后输入同样的数据利用np.testing.assert_allclose方法对比转换前后输出的差异,其中rtol代表相对偏差,atol代表绝对偏差,如果两者的差异超出指定的精度则会报错。在转换后,会在当前文件夹中生成一个resnet34.onnx文件。

2.2.3 将ONNX格式转成TensorRT格式

将ONNX转成TensorRT engine的方式有多种,其中最简单的就是使用trtexec工具。在上面2.2.2章节中已经将Pyotrch中的Resnet34转成ONNX格式了,接下来可以直接使用trtexec工具将其转为TensorRT engine格式:

trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt

其中:

  • –onnx是指向生成的onnx模型文件路径
  • –saveEngine是保存TensorRT engine的文件路径(发现一个小问题,就是保存的目录必须提前创建好,如果没有创建的话就会报错)

在进行trtexec之前,还需要将trtexec.exeD:\TensorRT-8.6.1.6\bin添加到环境变量中,具体得添加过程就不赘述了,需要添加得路径如下图9所示
在这里插入图片描述 图 9 图9 9添加环境变量后,如果使用VScode,请务必将VScode关闭后,在再次打开在上述终端中执行指令;也可以通过win 11自带的cmd窗口执行上述命令,两种方法的都可以,执行结果如下所示:

(tensorrt) C:\Users\Administrator\Desktop\resnet>trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt
&&&& RUNNING TensorRT.trtexec [TensorRT v8601] # trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt
[01/26/2024-22:16:49] [I] === Model Options ===
[01/26/2024-22:16:49] [I] Format: ONNX
[01/26/2024-22:16:49] [I] Model: resnet34.onnx
[01/26/2024-22:16:49] [I] Output:
[01/26/2024-22:16:49] [I] === Build Options ===
[01/26/2024-22:16:49] [I] Max batch: explicit batch
[01/26/2024-22:16:49] [I] Memory Pools: workspace: default, dlaSRAM: default, dlaLocalDRAM: default, dlaGlobalDRAM: default
[01/26/2024-22:16:49] [I] minTiming: 1
[01/26/2024-22:16:49] [I] avgTiming: 8
[01/26/2024-22:16:49] [I] Precision: FP32
[01/26/2024-22:16:49] [I] LayerPrecisions:
[01/26/2024-22:16:49] [I] Layer Device Types:
[01/26/2024-22:16:49] [I] Calibration:
[01/26/2024-22:16:49] [I] Refit: Disabled
[01/26/2024-22:16:49] [I] Version Compatible: Disabled
[01/26/2024-22:16:49] [I] TensorRT runtime: full
[01/26/2024-22:16:49] [I] Lean DLL Path:
[01/26/2024-22:16:49] [I] Tempfile Controls: { in_memory: allow, temporary: allow }
[01/26/2024-22:16:49] [I] Exclude Lean Runtime: Disabled
[01/26/2024-22:16:49] [I] Sparsity: Disabled
[01/26/2024-22:16:49] [I] Safe mode: Disabled
[01/26/2024-22:16:49] [I] Build DLA standalone loadable: Disabled
[01/26/2024-22:16:49] [I] Allow GPU fallback for DLA: Disabled
[01/26/2024-22:16:49] [I] DirectIO mode: Disabled
[01/26/2024-22:16:49] [I] Restricted mode: Disabled
[01/26/2024-22:16:49] [I] Skip inference: Disabled
[01/26/2024-22:16:49] [I] Save engine: trt_output/resnet34.trt
[01/26/2024-22:16:49] [I] Load engine:
[01/26/2024-22:16:49] [I] Profiling verbosity: 0
[01/26/2024-22:16:49] [I] Tactic sources: Using default tactic sources
[01/26/2024-22:16:49] [I] timingCacheMode: local
[01/26/2024-22:16:49] [I] timingCacheFile:
[01/26/2024-22:16:49] [I] Heuristic: Disabled
[01/26/2024-22:16:49] [I] Preview Features: Use default preview flags.
[01/26/2024-22:16:49] [I] MaxAuxStreams: -1
[01/26/2024-22:16:49] [I] BuilderOptimizationLevel: -1
[01/26/2024-22:16:49] [I] Input(s)s format: fp32:CHW
[01/26/2024-22:16:49] [I] Output(s)s format: fp32:CHW
[01/26/2024-22:16:49] [I] Input build shapes: model
[01/26/2024-22:16:49] [I] Input calibration shapes: model
[01/26/2024-22:16:49] [I] === System Options ===
......
[01/26/2024-22:17:07] [I] Average on 10 runs - GPU latency: 2.13367 ms - Host latency: 2.35083 ms (enqueue 0.329321 ms)
[01/26/2024-22:17:07] [I]
[01/26/2024-22:17:07] [I] === Performance summary ===
[01/26/2024-22:17:07] [I] Throughput: 408.164 qps
[01/26/2024-22:17:07] [I] Latency: min = 2.1969 ms, max = 11.5844 ms, mean = 2.34914 ms, median = 2.26282 ms, percentile(90%) = 2.5896 ms, percentile(95%) = 2.74451 ms, percentile(99%) = 3.15137 ms
[01/26/2024-22:17:07] [I] Enqueue Time: min = 0.214111 ms, max = 11.3787 ms, mean = 0.462134 ms, median = 0.360229 ms, percentile(90%) = 0.757202 ms, percentile(95%) = 0.912842 ms, percentile(99%) = 1.60339 ms
[01/26/2024-22:17:07] [I] H2D Latency: min = 0.20166 ms, max = 0.341309 ms, mean = 0.229284 ms, median = 0.223328 ms, percentile(90%) = 0.264771 ms, percentile(95%) = 0.274536 ms, percentile(99%) = 0.304443 ms
[01/26/2024-22:17:07] [I] GPU Compute Time: min = 1.9906 ms, max = 11.3264 ms, mean = 2.11385 ms, median = 2.0265 ms, percentile(90%) = 2.33765 ms, percentile(95%) = 2.4895 ms, percentile(99%) = 2.89893 ms
[01/26/2024-22:17:07] [I] D2H Latency: min = 0.00415039 ms, max = 0.0593262 ms, mean = 0.00600404 ms, median = 0.00463867 ms, percentile(90%) = 0.0119629 ms, percentile(95%) = 0.0145569 ms, percentile(99%) = 0.0292969 ms
[01/26/2024-22:17:07] [I] Total Host Walltime: 3.0037 s
[01/26/2024-22:17:07] [I] Total GPU Compute Time: 2.59158 s
[01/26/2024-22:17:07] [W] * GPU compute time is unstable, with coefficient of variance = 15.3755%.
[01/26/2024-22:17:07] [W]   If not already in use, locking GPU clock frequency or adding --useSpinWait may improve the stability.
[01/26/2024-22:17:07] [I] Explanations of the performance metrics are printed in the verbose logs.
[01/26/2024-22:17:07] [I]
&&&& PASSED TensorRT.trtexec [TensorRT v8601] # trtexec --onnx=resnet34.onnx --saveEngine=trt_output/resnet34.trt

执行结果生成的trt模型如下图10所示:
在这里插入图片描述 图 10 图10 10

2.2.4 测试生成的tensorrt模型

这个测试demo是参考链接2写的,在样例中对比ONNX和TensorRT的输出结果:

import numpy as np
import tensorrt as trt
import onnxruntime
import pycuda.driver as cuda
import pycuda.autoinit


def normalize(image: np.ndarray) -> np.ndarray:
    """
    Normalize the image to the given mean and standard deviation
    """
    image = image.astype(np.float32)
    mean = (0.485, 0.456, 0.406)
    std = (0.229, 0.224, 0.225)
    image /= 255.0
    image -= mean
    image /= std
    return image


def onnx_inference(onnx_path: str, image: np.ndarray):
    # load onnx model
    ort_session = onnxruntime.InferenceSession(onnx_path)

    # compute onnx Runtime output prediction
    ort_inputs = {ort_session.get_inputs()[0].name: image}
    res_onnx = ort_session.run(None, ort_inputs)[0]
    return res_onnx


def trt_inference(trt_path: str, image: np.ndarray):
    # Load the network in Inference Engine
    trt_logger = trt.Logger(trt.Logger.WARNING)
    with open(trt_path, "rb") as f, trt.Runtime(trt_logger) as runtime:
        engine = runtime.deserialize_cuda_engine(f.read())

    with engine.create_execution_context() as context:
        # Set input shape based on image dimensions for inference
        context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
        # Allocate host and device buffers
        bindings = []
        for binding in engine:
            binding_idx = engine.get_binding_index(binding)
            size = trt.volume(context.get_binding_shape(binding_idx))
            dtype = trt.nptype(engine.get_binding_dtype(binding))
            if engine.binding_is_input(binding):
                input_buffer = np.ascontiguousarray(image)
                input_memory = cuda.mem_alloc(image.nbytes)
                bindings.append(int(input_memory))
            else:
                output_buffer = cuda.pagelocked_empty(size, dtype)
                output_memory = cuda.mem_alloc(output_buffer.nbytes)
                bindings.append(int(output_memory))

        stream = cuda.Stream()
        # Transfer input data to the GPU.
        cuda.memcpy_htod_async(input_memory, input_buffer, stream)
        # Run inference
        context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
        # Transfer prediction output from the GPU.
        cuda.memcpy_dtoh_async(output_buffer, output_memory, stream)
        # Synchronize the stream
        stream.synchronize()

        res_trt = np.reshape(output_buffer, (1, -1))

    return res_trt


def main():
    image_h = 224
    image_w = 224
    onnx_path = "resnet34.onnx"
    trt_path = "trt_output/resnet34.trt"

    image = np.random.randn(image_h, image_w, 3)
    normalized_image = normalize(image)

    # Convert the resized images to network input shape
    # [h, w, c] -> [c, h, w] -> [1, c, h, w]
    normalized_image = np.expand_dims(np.transpose(normalized_image, (2, 0, 1)), 0)

    onnx_res = onnx_inference(onnx_path, normalized_image)
    ir_res = trt_inference(trt_path, normalized_image)
    np.testing.assert_allclose(onnx_res, ir_res, rtol=1e-03, atol=1e-05)
    print("Exported model has been tested with TensorRT Runtime, and the result looks good!")


if __name__ == '__main__':
    main()

执行结果如下:

(tensorrt) C:\Users\Administrator\Desktop\resnet>C:/ProgramData/anaconda3/envs/tensorrt/python.exe c:/Users/Administrator/Desktop/resnet/demo.py
[01/26/2024-22:19:08] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage and speed up TensorRT initialization. See "Lazy Loading" section of CUDA documentation https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use get_tensor_name instead.
  context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use set_input_shape instead.
  context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:43: DeprecationWarning: Use get_tensor_name instead.
  binding_idx = engine.get_binding_index(binding)
c:\Users\Administrator\Desktop\resnet\demo.py:44: DeprecationWarning: Use get_tensor_shape instead.
  size = trt.volume(context.get_binding_shape(binding_idx))
c:\Users\Administrator\Desktop\resnet\demo.py:45: DeprecationWarning: Use get_tensor_dtype instead.
  dtype = trt.nptype(engine.get_binding_dtype(binding))
c:\Users\Administrator\Desktop\resnet\demo.py:46: DeprecationWarning: Use get_tensor_mode instead.
  if engine.binding_is_input(binding):
Exported model has been tested with TensorRT Runtime, and the result looks good!

这个结果已经是成功了,只不过里面还有一些瑕疵,如结果中提到的CUDA lazy loading is not enabled的问题,可以使用在win 11的系统变量中添加变量名为CUDA_MODULE_LOADING和变量值为LAZY,如下图11所示:
在这里插入图片描述 图 11 图11 11添加之后,再次执行代码,得到结果,可以看出,上面的CUDA lazy loading is not enabled的问题已经解决了,剩下的问题原因就是tensorrt的版本为最新的8.6.1,这个测试demo是来源于参考链接2,使用的tensorrt版本为8.2.5,8.2.5中的很多API接口在8.6.1中更新了,都已经需要被8.6.1中的代替,这个就不解决了。

(tensorrt) C:\Users\Administrator\Desktop\resnet>C:/ProgramData/anaconda3/envs/tensorrt/python.exe c:/Users/Administrator/Desktop/resnet/demo.py
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use get_tensor_name instead.
  context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:39: DeprecationWarning: Use set_input_shape instead.
  context.set_binding_shape(engine.get_binding_index("input"), (1, 3, image.shape[-2], image.shape[-1]))
c:\Users\Administrator\Desktop\resnet\demo.py:43: DeprecationWarning: Use get_tensor_name instead.
  binding_idx = engine.get_binding_index(binding)
c:\Users\Administrator\Desktop\resnet\demo.py:44: DeprecationWarning: Use get_tensor_shape instead.
  size = trt.volume(context.get_binding_shape(binding_idx))
c:\Users\Administrator\Desktop\resnet\demo.py:45: DeprecationWarning: Use get_tensor_dtype instead.
  dtype = trt.nptype(engine.get_binding_dtype(binding))
c:\Users\Administrator\Desktop\resnet\demo.py:46: DeprecationWarning: Use get_tensor_mode instead.
  if engine.binding_is_input(binding):
Exported model has been tested with TensorRT Runtime, and the result looks good!

3 容易出现的问题

3.1 cuda 和 tensorrt 版本不匹配的问题

这个问题可能会导致在执行2.2测试的时候出现退出程序的问题,在断点调试的时候,应该会出现下面的问题,尽可能的让cuda和tensorrt的版本一致

trt.volume(context.get_binding_shape(binding_idx))
[WinError 10054] 远程主机强迫关闭了一个现有的连接。

3.2 出现编译和加载时不是同一个cuda cuBLAS/cuBLAS

即是下面的问题

[TRT] TensorRT was linked against cuBLAS/cuBLAS LT 11.6.3 but loaded cuBLAS/cuBLAS LT 11.5.1

最终要的解决方法前面已经提到过,就是anconda创建的虚拟环境tensorrt一定要使用pip安装pytorch,如果使用conda的方法安装pytorch,tensorrt会自动安装cudatoolkit,这可能会导致与win 11环境中安装的cuda版本不一致,导致出现上面的问题。
当然,如果不是上一段话引起的问题,使用pip的方法解决不了的话,可以阅读这一篇文章和这一篇文章。

4 参考链接

  1. TensorRT(一)Windows+Anaconda配置TensorRT环境 (Python版 )
  2. TensorRT安装记录(8.2.5)
  3. TensorRT的支持的cuda、cudnn等环境版本

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1421452.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

InsideCli、OutsideCli-电源管理(23国赛真题)

2023全国职业院校技能大赛网络系统管理赛项–模块B:服务部署(WindowServer2022) 文章目录 题目配置步骤验证 题目 设置电源配置,以便客户端在通电的情况下,永不进入睡眠。 配置步骤 验证

小猪o2o生活通系统更新到了v24.1版本了php文件开源了提供VUE了但是车牌识别功能你真得会用吗

一.车牌识别设置项 车牌识别设置项总开关:系统后台-社区管理-社区配置-车牌识别配置。 平台需要开启车牌识别功能,其次平台可以选择车牌识别功能是由平台配置还是小区自己配置有需要提供代码的可以Q我昵称注明:CSDN网友。如果是平台自己配置&…

2024年火爆《幻兽帕鲁》可以macos系统运行吗?

幻兽帕鲁已经爆了,你和朋友们都是在哪个平台一起玩的? 这款有些类似宝可梦的游戏,已经以野火燎原之势席卷互联网,并且势必会持续一段时间,你可别说你不知道。 《幻兽帕鲁》目前能在哪些平台上运行? 这款由…

linux 下gdal库(python)

之前在windows下安装gdal,先要下安装包再安装。这次在linux上安装,试了一下pip install gdal,不可以。想着linux应该一样,结果一搜网上教程一堆,乱七八糟的。 搞了一个小时 最后发现一句话就可以!&#xf…

力扣hot100 分割回文串 集合 dfs

Problem: 131. 分割回文串 文章目录 思路Code💖 DP预处理版 思路 👨‍🏫 参考题解 Code import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Deque; import java.util.List;public class Solution {int n;//字符…

基于二值化图像转GCode的斜向扫描实现

基于二值化图像转GCode的斜向扫描实现 什么是斜向扫描斜向扫描代码示例 基于二值化图像转GCode的斜向扫描实现 什么是斜向扫描 在激光雕刻中,斜向扫描(Diagonal Scanning)是一种雕刻技术,其中激光头沿着对角线方向来回移动&…

上位机图像处理和嵌入式模块部署(视频处理vs图像处理)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 从目前发展的情况来看,视频处理会慢慢变成一种主流趋势。这里面的原因很多,比如说现在嵌入式soc的算力越来越强、获取图像的…

【大数据安全】大数据安全的挑战与对策基础设施安全

目录 一、大数据安全的挑战与对策 (一)数据加密技术 (二)大数据安全与隐私 (三)大数据安全保障体系 (四)华为大数据安全解决方案 二、基础设施安全 (一&#xff0…

TSINGSEE青犀视频智慧电梯管理平台,执行精准管理、提升乘梯安全

一、方案背景 随着城市化进程的不断加快,我国已经成为全球最大的电梯生产和消费市场,电梯也成为人们日常生活中不可或缺的一部分。随着电梯数量的激增,电梯老龄化,维保数据不透明,物业管理成本高,政府监管…

用React给XXL-JOB开发一个新皮肤(四):实现用户管理模块

目录 一. 简述二. 模块规划 2.1. 页面规划2.2. 模型实体定义 三. 模块实现 3.1. 用户分页搜索3.2. Modal 配置3.3. 创建用户表单3.4. 修改用户表单3.5. 删除 四. 结束语 一. 简述 上一篇文章我们实现登录页面和管理页面的 Layout 骨架,并对接登录和登出接口。这篇…

【代码随想录】刷题笔记Day56

前言 26回了老家参加二姨的婚礼,还逛了几圈亲戚,回来就接家教的活,想到还要刷题开组会,回家注定是没法怎么休息啦,可恶 42. 接雨水 - 力扣(LeetCode) 暴力解法(双指针优化&#xf…

SpringBoot中集成Minio高性能分布式存储文件服务入门

场景 若依前后端分离版手把手教你本地搭建环境并运行项目: 若依前后端分离版手把手教你本地搭建环境并运行项目-CSDN博客 参考上面搭建项目。 Minio Minio是基于Go语言编写的对象存储服务,适合于存储大容量非结构化的数据,例如图片、音频…

定制自己的linux

记得看目录哦! 1. 基本介绍2. 思路分析3. 开始定制3.1 添加一块20G的硬盘3.2 重启,进行磁盘分区3.3 格式化分区3.4 创建目录,并挂载磁盘3.5 安装grub3.6 看是否安装上3.7 内核文件拷贝到磁盘3.8 修改grub2/grub.cfg3.9 创建目标主机的根文件系…

Spring Boot项目中集成连接池及部分细节说明

连接池 一,Connection连接二,数据库连接池三,集成数据库连接池1,Spring Boot默认连接池2,Druid连接池3,集成Druid(原生版本)3.1,引入依赖3.2,配置数据源3.3&a…

CSS 实现立体字效果

我们在工作中&#xff0c;很多场景会遇到立体文字&#xff0c;今天我们就来实现下&#xff0c;很简单&#xff0c;算是水文章吧&#xff1a; <h1>立体字体</h1>h1 {margin: 100px 0 0 100px;font-size: 5em;color: #fff;text-shadow: -1px 1px #bbb,-2px 2px #bbb…

设计模式——职责链模式(Chain of Responsibility Pattern)

概述 职责链模式(Chain of Responsibility Pattern)&#xff1a;避免请求发送者与接收者耦合在一起&#xff0c;让多个对象都有可能接收请求&#xff0c;将这些对象连接成一条链&#xff0c;并且沿着这条链传递请求&#xff0c;直到有对象处理它为止。职责链模式是一种对象行为…

深度学习(9)--pydot库和graphviz库安装流程详解

目录 一.pydot库安装 二.graphviz库安装 一.pydot库安装 pydot的安装可直接在编译器安装相关包&#xff0c;以PyCharm举例&#xff1a; 如果搜索可用软件包显示为空&#xff0c;记得在此处把使用Conda软件包管理器”点亮 二.graphviz库安装 点击链接下载安装包graphviz-2.38…

DX-11A DC0.075A 型信号继电器 柜内安装,板前接线

DX-11信号继电器&#xff1b; DX-11A信号继电器&#xff1b; DX-11B信号继电器&#xff1b; DX-11C信号继电器&#xff1b; DX-11Q信号继电器&#xff1b; DX-11A/Q信号继电器&#xff1b; DX-11B/Q信号继电器&#xff1b; DX-11C/Q信号继电器&#xff1b; 一. 用途 DX-11/0.…

.net core 6 集成 elasticsearch 并 使用分词器

1、nuget包安装NEST、安装elasticsearch、kibana、ik分词器、拼音分词器 2、创建操作对象 //索引库 static string indexName "testparticper"; //es 操作对象 ElasticClient elasticClient new ElasticClient(new ConnectionSettings(new Uri("http://192.…

Python使用分治算法作归并排序

对于分治算法的一个较为常规的应用中&#xff0c;归并排序是一个使用分治算法的排序方式。给定一个随机排序的数组&#xff0c;我们要将其元素按照升序或者降序的方式进行排序&#xff0c;可以设想到这样的一种算法&#xff0c;如果一个数组的上半部分和下半部分已经排好序&…