基于YOLOv8深度学习的水稻叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

news2025/1/11 2:36:45

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:水稻叶片病害智能诊断系统可以帮助农民和专业人士准确、快速地识别水稻叶片上的病害,从而采取相应的防治措施,提高水稻产量和质量,减少经济损失。本文基于YOLOv8深度学习框架,通过5932张图片,训练了一个水稻叶片病害智能诊断的识别模型,可用于识别4种不同的水稻病害类型。并基于此模型开发了一款带UI界面的水稻叶片病害智能诊断系统,可用于实时识别场景中的水稻叶片病害类型,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片批量图片视频以及摄像头进行识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3.模型训练
    • 4. 训练结果评估
    • 5. 利用模型进行推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

水稻叶片病害智能诊断系统可以帮助农民和专业人士准确、快速地识别水稻叶片上的病害,从而采取相应的防治措施,提高水稻产量和质量,减少经济损失。

该系统的具体应用场景包括:
农田病害监测:系统可安装在无人机或机器人上,通过航拍或移动检测,在大范围的农田中快速发现水稻叶片病害,帮助农民针对性地进行病虫害防治。
实时诊断:系统能够在实时环境中对水稻叶片进行病害诊断,快速判断病害类型,为及时采取措施提供准确的参考,避免病害的扩散和加重。
病害样本库建设:系统可以收集和保存大量水稻叶片病害样本的图像和诊断结果,建立起完善的病害样本库,为后续的学习与诊断提供有力支持。
多种病害检测:系统不仅可以识别水稻叶片常见的病害如纹枯病、白叶枯病等,也可以适应新出现的水稻病害,提供更加全面的病害检测能力。
综上所述,水稻叶片病害智能诊断系统在现代农业生产中具有重要意义,可以提高农作物的生产效益和质量,为农民和专业人士提供精确的病害诊断和预防控制方法。

博主通过搜集水稻叶片病害的相关数据图片并整理,根据YOLOv8的深度学习技术训练识别模型,并基于python与Pyqt5开发了一款界面简洁的水稻叶片病害智能诊断系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行4种不同水稻叶片病害的类型识别,分别为:['白叶枯病', '稻瘟病', '褐斑病', '枯草病'];
2. 支持图片、批量图片、视频以及摄像头检测
3. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:
点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
在这里插入图片描述

批量图片检测操作如下:
点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的水稻叶片病害数据集共包含5932张图片,分为4个病害类别,分别是['白叶枯病', '稻瘟病', '褐斑病', '枯草病']。部分数据集及类别信息如下:
在这里插入图片描述
在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO

# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':
    model.train(data='datasets/Data', epochs=300, batch=4)
    # results = model.val()

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
通过accuracy_top1图片准确率曲线图我们可以发现,该模型在验证集的准确率约为1.0,结果还是很不错的。
在这里插入图片描述

在这里插入图片描述

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
在这里插入图片描述

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/BACTERAILBLIGHT3_002.jpg"

# 加载模型
model = YOLO(path, task='classify')

# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款水稻叶片病害智能诊断系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境,【包含环境配置说明文档和一键环境配置脚本文件】。

关注下方名片GZH:【阿旭算法与机器学习】,发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的水稻叶片病害智能诊断系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1419910.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

USB-C显示器:未来显示技术的革新者

随着科技的不断发展,显示技术也在不断进步,而USB-C显示器作为最新的显示技术,正在引领着显示行业的发展潮流。USB-C显示器具有许多优点,如高速传输、便捷连接、节能环保等,使其成为未来显示技术的革新者。 一、USB-C显…

[Grafana]ES数据源Alert告警发送

简单的记录一下使用es作为数据源,如何在发送告警是带上相关字段 目录 前言 一、邮件配置 二、配置 1.Query 2.Alerts 总结 前言 ES作为数据源,算是Grafana中比较常见的,Alerts告警是我近期刚接触,有一个需求是当表空间大于…

Apache SeaTunnel (不含web) Window11 本机搭建(非源码)

启动环境 需要提前准备的(只提供作者试过且可行的方案) window11ubuntu20(wsl2) window11内置ubuntu的方式自行百度,此处不做陈述jdk8mysql8navicatvscode 环境准备不做过多陈述,以下是正式的安装启动步骤 SeaTunnel 2.3.3 资源准备 第一步: 创建文件…

基于Javaweb开发的二手图书零售系统详细设计【附源码】

基于Javaweb开发的二手图书零售系统详细设计【附源码】 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系方式 承接各种定制系统…

【webrtc】‘ninja.exe‘ 不是内部或外部命令,也不是可运行的程序及vs2019 重新构建m98

werbtc 就是用ninja.exe 来构建找到了自己以前构建的webrtc 原版 m98 【m98 】webrtc ninja 构建 、example、tests 及OWT- P2P 项目P2PMFC-E2E-m98G:\CDN\rtcCli\webrtc-checkout\src找到了自己的deptools的路径 deptools里确实没有ninja.exe D:\SOFT\depot_tools\third_party…

Nginx进阶篇【五】

Nginx进阶篇【五】 八、Nginx实现服务器端集群搭建8.1.Nginx与Tomcat部署8.1.1.环境准备(Tomcat)8.1.1.1.浏览器访问:8.1.1.2.获取动态资源的链接地址:8.1.1.3.在Centos上准备一个Tomcat作为后台web服务器8.1.1.4.准备一个web项目,将其打包为war8.1.1.5.启动tomcat进…

数据结构奇妙旅程之七大排序

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN …

欧拉计划第816题:求大量点的最短距离

本次来解决欧拉计划的第816题: 解: 第一步:最原始的算法 先从简单的情况开始,即原题里的14个点的情况 import mathdef gen_points(n):s = [0] * (2*n)s[0] = 290797for i in range(1, 2*n):s[i] = (s[i - 1] * s[i - 1]) % 50515093p = [(s[2 * i], s[2 * i + 1]) for…

Android悬浮窗的实现

最近想做一个悬浮窗秒表的功能,所以看下悬浮窗具体的实现步骤 1、初识WindowManager 实现悬浮窗主要用到的是WindowManager SystemService(Context.WINDOW_SERVICE) public interface WindowManager extends ViewManager {... }WindowManager是接口类&#xff0c…

【HTML教程】跟着菜鸟学语言—HTML5个人笔记经验(五)完结

HTML学习第五天 PS&#xff1a;牛牛只是每天花了1.5-2小时左右来学习HTML。这也是最后一天&#xff0c;其实HTML只需要1-2天就可以学完&#xff01; 书接上回 HTML 脚本 JavaScript 使 HTML 页面具有更强的动态和交互性。 尝试一下&#x1f3f7; 插入一段脚本 <!DOCT…

C语言菜鸟入门·判断语句(if语句、if...else语句、嵌套if语句)详细介绍

目录 1. if语句 2. if...else语句 3. if...else if...else 语句 4. 嵌套if语句 C 语言把任何非零和非空的值假定为 true&#xff0c;把零或 null 假定为 false。 语句描述if语句一个 if 语句 由一个布尔表达式后跟一个或多个语句组成。if...else语句一个 if 语句 后可跟…

Flutter 应用服务:主题、暗黑、国际化、本地化-app_service库

Flutter应用服务 主题、暗黑、国际化、本地化-app_service库 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/det…

FullStack之Django(1)开发环境配置

FullStack之Django(1)开发环境配置 author: Once Day date&#xff1a;2022年2月11日/2024年1月27日 漫漫长路&#xff0c;才刚刚开始… 全系列文档请查看专栏: FullStack开发_Once_day的博客-CSDN博客Django开发_Once_day的博客-CSDN博客 具体参考文档: The web framewor…

从比亚迪的整车智能战略,看王传福的前瞻市场布局

众所周知&#xff0c;作为中国新能源汽车的代表企业&#xff0c;比亚迪在中国乃至全球的新能源汽车市场一直都扮演着引领者的角色。2024年新年伊始&#xff0c;比亚迪又为新能源汽车带来了一项重磅发布。 整车智能才是真智能 近日&#xff0c;在“2024比亚迪梦想日”上&#xf…

微服务-微服务Alibaba-Nacos 源码分析(上)

Nacos&Ribbon&Feign核心微服务架构图 架构原理 1、微服务系统在启动时将自己注册到服务注册中心&#xff0c;同时外发布 Http 接口供其它系统调用(一般都是基于Spring MVC) 2、服务消费者基于 Feign 调用服务提供者对外发布的接口&#xff0c;先对调用的本地接口加上…

Java强训day11(选择题编程题)

选择题 编程题 题目1 import java.util.Scanner;public class Main {public static String TentoTwo(int n) {StringBuffer sum new StringBuffer();while (n ! 0) {sum.append(n % 2);n / 2;}return sum.reverse().toString();}public static void main(String[] args) {S…

大模型日报-20240130

500行代码构建对话搜索引擎&#xff0c;贾扬清被内涵的Lepton Search真开源了 来了&#xff0c;贾扬清承诺的 Lepton Search 开源代码来了。前天&#xff0c;贾扬清在 Twitter 上公布了 Lepton Search 的开源项目链接&#xff0c;并表示任何人、任何公司都可以自由使用开源代码…

【STM32F103单片机】利用ST-LINK V2烧录程序 面包板的使用

1、ST‐LINK V2安装 参考&#xff1a; http://t.csdnimg.cn/Ulhhq 成功&#xff1a; 2、烧录器接线 背后有标识的引脚对应&#xff1a; 3、烧录成功 烧录成功后&#xff0c;按下核心板的RESET键复位&#xff01;&#xff01;&#xff01;即可成功&#xff01; 4、面包板的…

如何改变音频的频率教程

这是一篇教你如何通过一些工具改变音频频率的教学文章。全程所用的软件都是免费的。 本文用到的软件&#xff1a; AIX智能下载器 用于抓取任何视频网站资源的插件 格式工厂 将mp4转化为mp3 Audacity 改变音频频率的软件 如果你已备好mp3或其他格式的音频&#xff0c;那么直接看…

AI工具【OCR 01】Java可使用的OCR工具Tess4J使用举例(身份证信息识别核心代码及信息提前方法分享)

Java可使用的OCR工具Tess4J使用举例 1.简介1.1 简单介绍1.2 官方说明 2.使用举例2.1 依赖及语言数据包2.2 核心代码2.3 识别身份证信息2.3.1 核心代码2.3.2 截取指定字符2.3.3 去掉字符串里的非中文字符2.3.4 提取出生日期&#xff08;待优化&#xff09;2.3.5 实测 3.总结 1.简…