目录
1、下载数据集
2、展示数据集里面的内容
3、DataLoader 的使用
例子:
结果展示:
1、下载数据集
# 数据集
import torchvision
train_set = torchvision.datasets.CIFAR10(root="./test10_dataset", train=True, download=True)
test_set = torchvision.datasets.CIFAR10(root="./test10_dataset", train=False, download=True)
如果上述代码在下载的时候,报错,那么需要添加两行代码。
# 数据集
import torchvision
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
train_set = torchvision.datasets.CIFAR10(root="./test10_dataset", train=True, download=True)
test_set = torchvision.datasets.CIFAR10(root="./test10_dataset", train=False, download=True)
运行结果:
2、展示数据集里面的内容
# 数据集
import ssl
import torchvision
from torch.utils.tensorboard import SummaryWriter
ssl._create_default_https_context = ssl._create_unverified_context
dataset_transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
])
train_set = torchvision.datasets.CIFAR10(root="./test10_dataset", train=True, transform=dataset_transforms, download=True)
test_set = torchvision.datasets.CIFAR10(root="./test10_dataset", train=False, transform=dataset_transforms, download=True)
print(test_set[1])
writer = SummaryWriter("test10_logs")
for i in range(10):
img,target = test_set[i]
writer.add_image("test_set",img,i)
writer.close()
# print(test_set[0])
# img, target = test_set[0]
# img.show()
结果展示:
3、DataLoader 的使用
https://pytorch.org/docs/stable/data.htmlhttp://xn--dataloader-po3sm345a
例子:
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# 准备的测试集
test_data = torchvision.datasets.CIFAR10(root="./test10_dataset", train=False, transform=torchvision.transforms.ToTensor())
# DataLoader()里面的参数: shuffle:洗牌
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)
# 长测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)
print(target)
writer = SummaryWriter('logs_dataloader')
step = 0
for data in test_loader:
imgs, targets = data
writer.add_images("test_data", imgs, step)
step = step + 1
writer.close()