目录
Redis 给缓存数据设置过期时间
Redis是如何判断数据是否过期的呢?
过期的数据的删除策略
Redis 内存淘汰机制
Redis 给缓存数据设置过期时间
一般情况下,我们设置保存的缓存数据的时候都会设置一个过期时间。为什么呢?
因为内存是有限的,如果缓存中的所有数据都是一直保存的话,分分钟直接Out of memory。
Redis 自带了给缓存数据设置过期时间的功能,比如:
127.0.0.1:6379> exp key 60 # 数据在 60s 后过期
(integer) 1
127.0.0.1:6379> setex key 60 value # 数据在 60s 后过期 (setex:[set] + [ex]pire)
OK
127.0.0.1:6379> ttl key # 查看数据还有多久过期
(integer) 56
注意:Redis中除了字符串类型有自己独有设置过期时间的命令 setex
外,其他方法都需要依靠 expire
命令来设置过期时间 。另外, persist
命令可以移除一个键的过期时间:
过期时间除了有助于缓解内存的消耗,还有什么其他用么?
很多时候,我们的业务场景就是需要某个数据只在某一时间段内存在,比如我们的短信验证码可能只在1分钟内有效,用户登录的 token 可能只在 1 天内有效。
如果使用传统的数据库来处理的话,一般都是自己判断过期,这样更麻烦并且性能要差很多。
Redis是如何判断数据是否过期的呢?
Redis 通过一个叫做过期字典(可以看作是hash表)来保存数据过期的时间。过期字典的键指向Redis数据库中的某个key(键),过期字典的值是一个long long类型的整数,这个整数保存了key所指向的数据库键的过期时间(毫秒精度的UNIX时间戳)。
过期字典是存储在redisDb这个结构里的:
typedef struct redisDb {
...
dict *dict; //数据库键空间,保存着数据库中所有键值对
dict *expires // 过期字典,保存着键的过期时间
...
} redisDb;
过期的数据的删除策略
如果假设你设置了一批 key 只能存活 1 分钟,那么 1 分钟后,Redis 是怎么对这批 key 进行删除的呢?
常用的过期数据的删除策略就两个:
-
惰性删除 :只会在取出key的时候才对数据进行过期检查。这样对CPU最友好,但是可能会造成太多过期 key 没有被删除。
-
定期删除 : 每隔一段时间抽取一批 key 执行删除过期key操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对CPU时间的影响。
定期删除对内存更加友好,惰性删除对CPU更加友好。两者各有千秋,所以Redis 采用的是 定期删除+惰性/懒汉式删除 。
但是,仅仅通过给 key 设置过期时间还是有问题的。因为还是可能存在定期删除和惰性删除漏掉了很多过期 key 的情况。这样就导致大量过期 key 堆积在内存里,然后就Out of memory了。
怎么解决这个问题呢?答案就是: Redis 内存淘汰机制。
Redis 内存淘汰机制
Redis 提供 6 种数据淘汰策略:
-
volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
-
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
-
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
-
allkeys-lru(least recently used):当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)
-
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
-
no-eviction:禁止驱逐数据,也就是说当内存不足以容纳新写入数据时,新写入操作会报错。这个应该没人使用吧!
4.0 版本后增加以下两种:
-
volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰
-
allkeys-lfu(least frequently used):当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的 key