目录
- 1、前言
- 版本更新说明
- 给读者的一封信
- FPGA就业高端项目培训计划
- 免责声明
- 2、相关方案推荐
- 我已有的FPGA视频拼接叠加融合方案
- 本方案在Xilinx Kintex7 系列FPGA上的应用
- 本方案在Xilinx Artix7 系列FPGA上的应用
- 3、设计思路框架
- 视频源选择
- ov5640 i2c配置及采集
- 动态彩条
- 多路视频拼接算法
- 图像缓存
- 视频输出
- PL端逻辑工程源码架构
- PS端SDK软件工程源码架构
- 4、工程源码11:掌握1路视频拼接用法
- 5、工程源码12:掌握2路视频拼接
- 6、工程源码13:掌握3路视频拼接
- 7、工程源码14:掌握4路视频拼接
- 8、工程源码15:掌握8路视频拼接
- 9、工程源码16:掌握16路视频拼接
- 10、工程移植说明
- vivado版本不一致处理
- FPGA型号不一致处理
- 其他注意事项
- 11、上板调试验证并演示
- 准备工作
- 工程11-->1路视频叠加输出演示
- 工程12-->2路视频拼接输出演示
- 工程13-->3路视频拼接输出演示
- 工程14-->4路视频拼接输出演示
- 工程15-->8路视频拼接输出演示
- 工程16-->16路视频拼接输出演示
- 12、福利:工程源码获取
FPGA高端项目:Xilinx Zynq7020系列FPGA多路视频拼接 工程解决方案 提供6套工程源码和技术支持
1、前言
没玩过图像拼接都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
图像拼接在实际项目中应用广泛,特别是在医疗和军工行业,目前市面上的图像拼接方案主要有Xilinx官方推出的Video Mixer方案和自己手撕代码的自定义方案;Xilinx官方推出的Video Mixer方案直接调用IP,通过SDK配置即可实现,但他的使能难度较高,且对FPGA资源要求也很高,不太适合小规模FPGA,在zynq和K7以上平台倒是很使用,如果对Video Mixer方案感兴趣,可以参考我之前的博客,博客地址:
点击直接前往
本文使用Xilinx的Zynq7000系列FPGA纯verilog代码实现多路视频图像拼接,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你的手里没有摄像头,或者你的开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,默认使用ov5640作为视频源;由于我的手里只有一个摄像头,所以fpga采集数据后,直接复制多份,用来模拟多路摄像头输入;使用我常用的FDMA方案实现图像的三帧缓存,不同的视频缓存在DDR3中不同的地址,读视频时一次性将视频缓存区域读完,从而实现视频拼接的功能;本视频拼接方案理论上也实现任意路视频拼接,但受限于AXI4带宽和FPGA时钟频率,我目前最多实现了16路视频拼接;以4路视频拼接为例,输出视频分辨率为1920x1080,所以每路视频的分辨率就为960x540,这样刚好4路视频占满输出屏幕,看起来美观一些;读出视频后,用纯verilog显示的HDMI输出模块送显示器显示即可;针对目前市面上主流的FPGA,本纯verilog图像缩放方案一共移植了17套工程源码,本博文介绍其中基于Xilinx Zynq7020系列FPGA的6套工程,详情如下:
这里说明一下提供的6套工程源码的作用和价值,如下:
工程源码11:1路视频叠加1080P背景输出
1路ov5640或者动态彩条输入,HDMI输出,输入视频分辨率960x540,在输出1920x1080的背景下叠加960x540的图像输出,目的是让读者掌握视频拼接的用法,为后面的多路视频拼接打好基础;
工程源码12:2路视频拼接
2路ov5640或者动态彩条输入,HDMI输出,输入视频分辨率960x540,在输出1920x1080的背景下叠加2路960x540的图像输出,即2路视频拼接输出,目的是让读者掌握2路视频拼接的用法,以便能够移植和设计自己的项目;
工程源码13:3路视频拼接
3路ov5640或者动态彩条输入,HDMI输出,输入视频分辨率960x540,在输出1920x1080的背景下叠加3路960x540的图像输出,即3路视频拼接输出,目的是让读者掌握3路视频拼接的用法,以便能够移植和设计自己的项目;
工程源码14:4路视频拼接
4路ov5640或者动态彩条输入,HDMI输出,输入视频分辨率960x540,在输出1920x1080的背景下叠加4路960x540的图像输出,即4路视频拼接输出,目的是让读者掌握4路视频拼接的用法,以便能够移植和设计自己的项目;
工程源码15:8路视频拼接
8路ov5640或者动态彩条输入,HDMI输出,输入视频分辨率480x540,在输出1920x1080的背景下叠加8路480x540的图像输出,即8路视频拼接输出,目的是让读者掌握8路视频拼接的用法,以便能够移植和设计自己的项目;
工程源码16:16路视频拼接
16路ov5640或者动态彩条输入,HDMI输出,输入视频分辨率240x540,在输出1920x1080的背景下叠加16路240x540的图像输出,即3路视频拼接输出,目的是让读者掌握16路视频拼接的用法,以便能够移植和设计自己的项目;
本博客详细描述了Xilinx Zynq7020系列FPGA多路视频拼接的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;
版本更新说明
此版本为第3版,之前根据读者的建议,对第1版工程做了改进和更新形成如下的第2版:
1:增加了输入视频静态彩条的选择,有的读者说他手里没有OV5640摄像头或者摄像头原理图和我的不一致,导致在移植过程中困难很大,基于此,增加了静态彩条,它由FPGA内部产生,不需要外接摄像头就可以使用,使用方法在后文有说明;
2:优化了FDMA,之前的FDMA内AXI4的数据读写突发长度为256,导致在低端FPGA上带宽不够,从而图像质量不佳,基于此,将FDMA内AXI4的数据读写突发长度改为128;
3:优化了HDMI输出模块,之前用的自定义IP,有读者说IP无法更新,虽能正常使用,但看源码不方便,基于此,将HDMI输出模块改为纯verilog实现的,直接了当;
现在根据读者的建议,又对第2版工程做了改进和更新形成如下的第3版:
1:将原来的静态彩条改为动态彩条,视觉效果更佳;
2:新增了基于Xilinx Zynq7020平台的6套工程源码和基于Xilinx Artix7平台的4套工程源码,使得该视频拼接方案更加具有通用性和移植性;
3:工程整体使用难度大大降低,由于优化了整体代码架构,代码量和行数减少了近45%,仅需修改集合参数就能快速实现工程的移植和修改;
给读者的一封信
FPGA作为当今热门行业,入行门槛很高,工资待遇不错,一时间引无数英雄尽折腰,但很多初学者甚至工程师都还有很多误区,现给读者一封信如下:
1、矮要承认挨打站稳
要学FPGA,甚至吃这碗饭,每个人都是从零基础开始的,你对自己有自信,认为你行,就自学;你不自信,就找别人学;和古代拜师学艺是一回事儿;首先思维要符合逻辑;
2、基础问题需要自己解决
最基础的知识,比如:verilog语法、vivado工具使用、模电数电基础常识、电脑使用、计算机基本结构。。。这些基础知识在网上都是免费的,既有文字资料也有视频资料;这些基础知识你一定要具备,因为这是你能获得的性价比最高的东西了,首先它免费;其次它简单,只需要你花时间,不需要花脑子;最后它重要,这是你干FPGA的基础;
3、有了源码等于零
你可能认为,我有了源码就能做项目了,我可以肯定的告诉你,该醒醒了;原子弹的详细原理和原料配方甚至生产工艺流程在网上都是公开的,为啥全世界就那联合国几大流氓能造出来的?同样的,源码给你,你看得懂吗?你知道怎么用吗?看不懂不会用的源码,跟废物有什么区别?你需要的是源码+工程,最完美的是源码+工程+技术支持;有了源码,就有了可开发的底层架构,有了工程就知道源码或者模块怎么使用,有了技术支持就可以根据源码修改开发自己的项目;
4、先学会爬在学会跑
对于初学者,没有资格研究代码,你首先需要做的是对工程进行复现;比如给你一个图像的工程,你首先在自己的开发板上复现这个工程的功能,然后再去阅读理解代码,然后对代码的功能部分做小幅修改,比如改一下接口,增加几个输出接口,比如加一个LED输出;小幅修改后再慢慢增加修改幅度,以符合自己的需求;
5、学FPGA要不求甚解
学FPGA要不求甚解,甚至不需要理解,这句话咋听着有点不符合逻辑呢?对于很多功能性模块而言,你不需要理解它怎么实现的,你只需要知道怎么使用它,比如一个图像缩放模块,这种东西都是很老的知识,以你目前的知识水平,该模块的代码你怎么看也看不懂的,但你只要知道怎么使用它就行了,知道怎么使用,就能做项目,就能在公司呆下去了,原因很简单,老板招你来是干活儿的,不是招你来学习的,那是学校的事儿;如果要等什么都懂了才干活儿,那公司早垮了,学FPGA就是在实践中学习,先上前线去干活,边干边学,在实践中遇到问题,并主动去查资料问大佬理解问题,才是成长最快的,而不是一味的咬文嚼字刨根问底;
FPGA就业高端项目培训计划
鉴于目前的FPGA就业和行业现状,本博推出了FPGA就业高端项目培训:纯verilog多路视频拼接 工程解决方案的计划,该计划旨在让一部分人先学会FPGA纯verilog多路视频拼接,提高从业者的技术水平和工资待遇,详细计划如下:
FPGA就业高端项目培训计划细节:
1、我发你上述17套工程源码和对应的工程设计文档网盘链接,你保存下载,作为培训的核心资料;
2、你根据自己的实际情况安装好对应的开发环境,然后对着设计文档进行浅层次的学习;
3、遇到不懂的随时问我,包括代码、职业规划、就业咨询、人生规划、战略规划等等;
4、每周末进行一次腾讯会议,我会检查你的学习情况和面对面沟通交流;
5、你可以移植代码到你自己的FPGA开发板上跑,如果你没有板子,你根据你自己的需求修改代码后,编译工程,把bit发我,我帮你下载到我的板子上验证;
免责声明
本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。
2、相关方案推荐
我已有的FPGA视频拼接叠加融合方案
我的主页目前有FPGA视频拼接叠加融合专栏,改专栏收录了我目前手里已有的FPGA视频拼接叠加融合方案,从实现方式分类有基于HSL实现的视频拼接、基于纯verilog代码实现的视频拼接;从应用上分为单路、2路、3路、4路、8路、16路视频拼接;视频缩放+拼接;视频融合叠加;从输入视频分类可分为OV5640摄像头视频拼接、SDI视频拼接、CameraLink视频拼接等等;以下是专栏地址:
点击直接前往
本方案在Xilinx Kintex7 系列FPGA上的应用
本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx Zynq7020系列FPGA上的应用,想要直接应用于Xilinx Kintex7 系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往
本方案在Xilinx Artix7 系列FPGA上的应用
本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx Zynq7020系列FPGA上的应用,想要直接应用于Xilinx Artix7 系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往
3、设计思路框架
本博客提供6套vivado工程源码,设计框图如下:
视频源选择
视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你的手里没有摄像头,或者你的开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,默认使用ov5640作为视频源;视频源的选择通过代码顶层的`define宏定义进行;如下:
选择逻辑代码部分如下:
选择逻辑如下:
当(注释) define COLOR_TEST时,输入源视频是ov5640摄像头;
当(不注释) define COLOR_TEST时,输入源视频是动态彩条;
ov5640 i2c配置及采集
视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你的手里没有摄像头,或者你的开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,默认使用ov5640作为视频源;ov5640需要i2c配置才能使用,需要i2c配置分辨率,然后将DVP接口的两个时钟一个像素的GRB565视频数据采集为一个时钟一个像素的RGB565或者RGB888视频数据;ov5640i2c配置及采集代码如下:
ov5640配置和采集模块顶层参数如下:
module helai_ov5640_rx #(
parameter DELAY = 1 , // 有的摄像头使用转接板与FPGA开发板连接,可能需要考虑上电延时,不需要是设为0
parameter DEVID = 8'h78, // i2c 从机器件地址
parameter IMAGE_WIDTH = 1280 , // ov5640输出视频宽度
parameter IMAGE_HEIGHT = 720 , // ov5640输出视频高度
parameter RGB_TYPE = 1'd0 // 设为0-->输出RGB565;设为1-->输出RGB888
)(
input clk_25m , // 固定输入 25M 时钟
input rst_n , // 低电平复位
output cmos_scl , // ov5640的scl接口
inout cmos_sda , // ov5640的sda接口
input cmos_pclk_i , // ov5640的pclk接口
input cmos_href_i , // ov5640的href接口
input cmos_vsync_i, // ov5640的vsync接口
input [7:0] cmos_data_i , // ov5640的data接口
output cmos_xclk_o , // ov5640的xclk接口,如果你的摄像头自带晶振,则此信号不需要
output [23:0] ov5640_rgb , // 输出的RGB视频像素数据
output ov5640_de , // 输出的RGB视频像素数据有效信号
output ov5640_vs , // 输出的RGB视频场同步信号
output ov5640_hs , // 输出的RGB视频行同步信号
output cfg_done // ov5640配置完成拉高信号
);
ov5640配置和采集模块的例化请参考工程源码的顶层代码;
动态彩条
如果你的手里没有ov5640,或者你得开发板没有ov5640接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,动态彩条模块代码位置和顶层接口和例化如下:
动态彩条模块的例化请参考工程源码的顶层代码;
多路视频拼接算法
纯verilog多路视频拼接方案如下:以4路OV5640摄像头拼接为例;
输出屏幕分辨率为1920X1080;
输入摄像头分辨率为960X540;
4路输入刚好可以占满整个屏幕;
多路视频的拼接显示原理如下:
以把 2 个摄像头 CAM0 和 CAM1 输出到同一个显示器上为列,为了把 2 个图像显示到 1 个显示器,首先得搞清楚以下关系:
hsize:每 1 行图像实际在内存中占用的有效空间,以 32bit 表示一个像素的时候占用内存大小为 hsize X 4;
hstride:用于设置每行图像第一个像素的地址,以 32bit 表示一个像素的时候 v_cnt X hstride X 4;
vsize:有效的行;
因此很容易得出 cam0 的每行第一个像素的地址也是 v_cnt X hstride X 4;
同理如果我们需要把 cam1 在 hsize 和 vsize 空间的任何位置显示,我们只要关心 cam1 每一行图像第一个像素的地址,可以用以下公式 v_cnt X hstride X 4 + offset;
uifdma_dbuf 支持 stride 参数设置,stride 参数可以设置输入数据 X(hsize)方向每一行数据的第一个像素到下一个起始像素的间隔地址,利用 stride 参数可以非常方便地摆放输入视频到内存中的排列方式。
关于uifdma_dbuf,可以参考我之前写的文章点击查看:FDMA实现视频数据三帧缓存
根据以上铺垫,每路摄像头缓存的基地址如下:
CAM0:ADDR_BASE=0x80000000;
CAM1:ADDR_BASE=0x80000000+(1920-960)X4;
CAM2:ADDR_BASE=0x80000000+(1080-540)X1920X4;
CAM3:ADDR_BASE=0x80000000+(1080-540)X1920X4+(1920-960)X4;
地址设置完毕后基本就完事儿了;
注意!
注意!
注意!
在Zynq的地址分配中,FDMA的基地址不是上述的0x80000000,而是0x01000000;因为0x00000000是Zynq内核启动及其片内外设的基地址,所以不能以0x00000000作为PL端设备的基地址,由于Zynq地址分配从0x00000000开始,所以也不可能将FDMA基地址人为设置为0x80000000了;
图像缓存
经常看我博客的老粉应该都知道,我做图像缓存的套路是FDMA,他的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往
FDMA图像缓存架构如下图所示:截图为4路视频拼接,其他多路视频拼接与之类似;
需要注意的是,Xilinx系列的Artix7、Kintex7以及紫光和高云工程都使用DDR3作为缓存,Zynq7020工程使用PS端的DDR3作为缓存;Artix7、Kintex7工程调用MIG IP实现DDR3读写;Zynq7020工程调用Zynq软核实现DDR3读写;没有用到VDMA之类的IP,所以不需要SDK配置;
这里多路视频拼接时,调用多路FDMA进行缓存,具体讲就是每一路视频调用1路FDMA,以4路视频拼接为例:
调用4路FDMA,其中三路配置为写模式,因为这三路视频在这里只需要写入DDR3,读出是由另一个FDMA完成,配置如下:
另外1路FDMA配置为读写模式,因为4路视频需要同时一并读出,配置如下:
视频拼接的关键点在于4路视频在DDR3中缓存地址的不同,还是以4路视频拼接为例,4路FDMA的写地址以此为:
第一路视频缓存写基地址:0x80000000;
第二路视频缓存写基地址:0x80000f00;
第三路视频缓存写基地址:0x803f4800;
第四路视频缓存写基地址:0x803f5700;
视频缓存读基地址:0x80000000;
视频输出
视频从FDMA读出后,经过VGA时序模块和HDMI发送模块后输出显示器,代码位置如下:
VGA时序配置为1920X1080,HDMI发送模块采用verilog代码手写,可以用于FPGA的HDMI发送应用,关于这个模块,请参考我之前的博客,博客地址:点击直接前往
PL端逻辑工程源码架构
Xilinx Zynq7020 系列FPGA工程源码架构具有高度相似性,以工程14为例截图如下:
PS端SDK软件工程源码架构
Xilinx Zynq7020 系列FPGA纯verilog图像缩放工程没有用官方推荐的VDMA方案,而是用了自定义的FDMA方案,虽然不需要SDK配置,但FDMA的AXI4接口时钟由Zynq提供,所以需要运行SDK程序才能启动Zynq,从而为PL端逻辑提供时钟;由于不需要SDK配置,所以SDK软件代码就变得极度简单,只需运行一个“Hello World”即可,如下:
4、工程源码11:掌握1路视频拼接用法
开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2019.1;
输入:1路OV5640摄像头或动态彩条,分辨率960x540;
输出:HDMI,1080P分辨率下叠加1路960x540有效区域显示;
工程作用:掌握1路视频拼接用法;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:
5、工程源码12:掌握2路视频拼接
开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2019.1;
输入:2路OV5640摄像头或动态彩条,分辨率960x540;
输出:HDMI,1080P分辨率下叠加2路960x540有效区域显示;
工程作用:掌握2路视频叠加1080P背景输出;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:
6、工程源码13:掌握3路视频拼接
开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2019.1;
输入:3路OV5640摄像头或动态彩条,分辨率960x540;
输出:HDMI,1080P分辨率下叠加3路960x540有效区域显示;
工程作用:掌握3路视频叠加1080P背景输出;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:
7、工程源码14:掌握4路视频拼接
开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2019.1;
输入:4路OV5640摄像头或动态彩条,分辨率960x540;
输出:HDMI,1080P分辨率下叠加4路960x540有效区域显示;
工程作用:掌握4路视频叠加1080P背景输出;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:
8、工程源码15:掌握8路视频拼接
开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2019.1;
输入:8路OV5640摄像头或动态彩条,分辨率480x540;
输出:HDMI,1080P分辨率下叠加8路480x540有效区域显示;
工程作用:掌握8路视频叠加1080P背景输出;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:
9、工程源码16:掌握16路视频拼接
开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2019.1;
输入:16路OV5640摄像头或动态彩条,分辨率240x540;
输出:HDMI,1080P分辨率下叠加16路240x540有效区域显示;
工程作用:掌握16路视频叠加1080P背景输出;
工程Block Design请参考第3章节“设计思路框架”的“图像缓存”小节内容;
工程代码架构请参考第3章节“设计思路框架”的“工程源码架构”小节内容;
工程的资源消耗和功耗如下:
10、工程移植说明
vivado版本不一致处理
1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
3:如果你的vivado版本高于本工程vivado版本,解决如下:
打开工程后会发现IP都被锁住了,如下:
此时需要升级IP,操作如下:
FPGA型号不一致处理
如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;
其他注意事项
1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;
11、上板调试验证并演示
准备工作
需要如下器材设备:
1、FPGA开发板;
2、OV5640摄像头或HDMI输入设备,比如笔记本电脑,两者都没有则使用动态彩条;
2、HDMI连接线和显示器;
工程11–>1路视频叠加输出演示
工程11输出演示,我将1路动态彩条和ov5640摄像头叠加输出的视频剪辑整理后如下:
视频前半段为动态彩条输出;
视频前后段为ov5640摄像头输出;
1路视频叠加输出演示
工程12–>2路视频拼接输出演示
工程12输出演示,我将2路动态彩条和ov5640摄像头视频拼接输出的视频剪辑整理后如下:
视频前半段为动态彩条输出;
视频前后段为ov5640摄像头输出;
2路视频拼接输出演示
工程13–>3路视频拼接输出演示
工程13输出演示,我将3路动态彩条和ov5640摄像头视频拼接输出的视频剪辑整理后如下:
视频前半段为动态彩条输出;
视频前后段为ov5640摄像头输出;
3路视频拼接输出演示
工程14–>4路视频拼接输出演示
工程14输出演示,我将4路动态彩条和ov5640摄像头视频拼接输出的视频剪辑整理后如下:
视频前半段为动态彩条输出;
视频前后段为ov5640摄像头输出;
4路视频拼接输出演示
工程15–>8路视频拼接输出演示
工程15输出演示,我将8路动态彩条和ov5640摄像头视频拼接输出的视频剪辑整理后如下:
视频前半段为动态彩条输出;
视频前后段为ov5640摄像头输出;
8路视频拼接输出演示
工程16–>16路视频拼接输出演示
工程16输出演示,我将16路动态彩条和ov5640摄像头视频拼接输出的视频剪辑整理后如下:
视频前半段为动态彩条输出;
视频前后段为ov5640摄像头输出;
16路视频拼接输出演示
12、福利:工程源码获取
福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下: