【RT-DETR有效改进】轻量化ConvNeXtV2全卷积掩码自编码器网络

news2024/11/16 3:12:26

前言

大家好,我是Snu77,这里是RT-DETR有效涨点专栏

本专栏的内容为根据ultralytics版本的RT-DETR进行改进,内容持续更新,每周更新文章数量3-10篇。

专栏以ResNet18、ResNet50为基础修改版本,同时修改内容也支持ResNet32、ResNet101和PPHGNet版本,其中ResNet为RT-DETR官方版本1:1移植过来的,参数量基本保持一致(误差很小很小),不同于ultralytics仓库版本的ResNet官方版本,同时ultralytics仓库的一些参数是和RT-DETR相冲的所以我也是会教大家调好一些参数和代码,真正意义上的跑ultralytics的和RT-DETR官方版本的无区别

👑欢迎大家订阅本专栏,一起学习RT-DETR👑  

 一、本文介绍

本文给大家带来的改进机制是ConvNeXtV2网络,ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架全局响应归一化(GRN)层。我将其替换RT-DETR的特征提取网络,用于提取更有用的特征。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中,替换该网络结构后参数量下降越百分之四十,计算量下降约一半。

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

目录

 一、本文介绍

二、ConvNeXt V2架构原理

2.1 ConvNeXt V2的基本原理

2.2 架构创新

三、ConvNeXt V2的核心代码

 四、手把手教你添加ConvNeXt V2机制

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七 

4.8 修改八

4.9 RT-DETR不能打印计算量问题的解决

4.10 可选修改

五、ConvNeXt V2的yaml文件

5.1 yaml文件

5.2 运行文件

5.3 成功训练截图

六、全文总结


二、ConvNeXt V2架构原理

论文地址: 官方论文地址 

代码地址: 官方代码地址


2.1 ConvNeXt V2的基本原理

ConvNeXt V2是一种新型的卷积神经网络架构,它融合了自监督学习技术和架构改进,特别是加入了全卷积掩码自编码器框架全局响应归一化(GRN)层。这些创新显著提升了纯ConvNet在多个识别基准测试上的性能,如ImageNet分类、COCO检测和ADE20K分割。ConvNeXt V2还包括从效率型的3.7M参数Atto模型到650M参数的Huge模型的多个版本,覆盖了从轻量级到高性能的各种应用需求。

ConvNeXt V2的核心要点包括:

1. 架构创新:融合全卷积掩码自编码器框架和全局响应归一化(GRN)层,优化了原有ConvNeXt架构。
2. 自监督学习:利用自监督学习技术提高了模型的泛化能力和效率。

下图为大家比较了ConvNeXt V1和ConvNeXt V2两个版本中的块设计

在ConvNeXt V2块中,新增加了全局响应归一化(GRN)层,并且由于GRN层的引入,原先的LayerScale层变得多余,因此在V2版本中被去除。这些变化旨在优化网络的特征表示和提高模型的学习效率。


2.2 架构创新

ConvNeXt V2 架构创新主要体现在以下几个方面:

1. 全卷积掩码自动编码器(FCMAE):采用全卷积方法处理图像,特别适合处理带有掩码的图像数据。

2. 全局响应归一化(GRN)层:在卷积块中引入GRN层,增强了模型处理信息时的通道间竞争,提高特征表达的质量。

3. 去除LayerScale层:因为GRN层的加入,原来的LayerScale层变得多余,在V2架构中被移除,简化了模型结构。

这张图展示了ConvNeXt V2中提出的全卷积掩码自动编码器(FCMAE)框架

在这张图中,ConvNeXt V2的FCMAE框架采用了稀疏卷积技术作为其编码器的核心,这是为了有效地处理输入图像中的非掩蔽(可见)像素。编码器结构层次化,有助于捕获不同层级的特征信息。解码器相对简单,使用轻量级的ConvNeXt块,目的是重构图像,但仅限于目标(即被掩蔽的)区域。这种不对称设计允许模型在预训练时专注于关键区域,这对于图像的自监督学习特别有效。损失函数的计算仅在掩蔽的区域进行,进一步强化了模型对于目标区域的学习和重构能力。


三、ConvNeXt V2的核心代码

使用方式看章节四

# Copyright (c) Meta Platforms, Inc. and affiliates.

# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath

__all__ = ['convnextv2_atto', 'convnextv2_femto', 'convnext_pico', 'convnextv2_nano', 'convnextv2_tiny', 'convnextv2_base', 'convnextv2_large', 'convnextv2_huge']

class LayerNorm(nn.Module):
    """ LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class GRN(nn.Module):
    """ GRN (Global Response Normalization) layer
    """

    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x

class Block(nn.Module):
    """ ConvNeXtV2 Block.

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
    """

    def __init__(self, dim, drop_path=0.):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(4 * dim)
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXtV2(nn.Module):
    """ ConvNeXt V2

    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(self, in_chans=3, num_classes=1000,
                 depths=[3, 3, 9, 3], dims=[96, 192, 384, 768],
                 drop_path_rate=0., head_init_scale=1.
                 ):
        super().__init__()
        self.depths = depths
        self.downsample_layers = nn.ModuleList()  # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList()  # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6)  # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)

        self.apply(self._init_weights)
        self.head.weight.data.mul_(head_init_scale)
        self.head.bias.data.mul_(head_init_scale)
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        results = []
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
            results.append(x)
        return results  # global average pooling, (N, C, H, W) -> (N, C)


def convnextv2_atto(**kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs)
    return model


def convnextv2_femto(**kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs)
    return model


def convnext_pico(**kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs)
    return model


def convnextv2_nano(**kwargs):
    model = ConvNeXtV2(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs)
    return model


def convnextv2_tiny(**kwargs):
    model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
    return model


def convnextv2_base(**kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    return model


def convnextv2_large(**kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    return model


def convnextv2_huge(**kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs)
    return model



if __name__ == "__main__":
    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)

    # Model
    model = convnextv2_atto()

    out = model(image)
    print(len(out))


 四、手把手教你添加ConvNeXt V2机制

下面教大家如何修改该网络结构,主干网络结构的修改步骤比较复杂,我也会将task.py文件上传到CSDN的文件中,大家如果自己修改不正确,可以尝试用我的task.py文件替换你的,然后只需要修改其中的第1、2、3、5步即可。

修改过程中大家一定要仔细


4.1 修改一

首先我门中到如下“ultralytics/nn”的目录,我们在这个目录下在创建一个新的目录,名字为'Addmodules'(此文件之后就用于存放我们的所有改进机制),之后我们在创建的目录内创建一个新的py文件复制粘贴进去 ,可以根据文章改进机制来起,这里大家根据自己的习惯命名即可。


4.2 修改二 

第二步我们在我们创建的目录内创建一个新的py文件名字为'__init__.py'(只需要创建一个即可),然后在其内部导入我们本文的改进机制即可,其余代码均为未发大家没有不用理会!


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'然后在开头导入我们的所有改进机制(如果你用了我多个改进机制,这一步只需要修改一次即可)


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名(此处我的文件里已经添加很多了后期都会发出来,大家没有的不用理会即可)。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m(*args)
            c2 = m.width_list  # 返回通道列表
            backbone = True


4.6 修改六

用下面的代码替换红框内的内容。 

if isinstance(c2, list):
    m_ = m
    m_.backbone = True
else:
    m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
    t = str(m)[8:-2].replace('__main__.', '')  # module type
m.np = sum(x.numel() for x in m_.parameters())  # number params
m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type
if verbose:
    LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
save.extend(
    x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
layers.append(m_)
if i == 0:
    ch = []
if isinstance(c2, list):
    ch.extend(c2)
    if len(c2) != 5:
        ch.insert(0, 0)
else:
    ch.append(c2)


4.7 修改七 

修改七这里非常要注意,不是文件开头YOLOv8的那predict,是400+行的RTDETR的predict!!!初始模型如下,用我给的代码替换即可!!!

代码如下->

 def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

4.8 修改八

我们将下面的s用640替换即可,这一步也是部分的主干可以不修改,但有的不修改就会报错,所以我们还是修改一下。


4.9 RT-DETR不能打印计算量问题的解决

计算的GFLOPs计算异常不打印,所以需要额外修改一处, 我们找到如下文件'ultralytics/utils/torch_utils.py'文件内有如下的代码按照如下的图片进行修改,大家看好函数就行,其中红框的640可能和你的不一样, 然后用我给的代码替换掉整个代码即可。

def get_flops(model, imgsz=640):
    """Return a YOLO model's FLOPs."""
    try:
        model = de_parallel(model)
        p = next(model.parameters())
        # stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
        stride = 640
        im = torch.empty((1, 3, stride, stride), device=p.device)  # input image in BCHW format
        flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0  # stride GFLOPs
        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
        return flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPs
    except Exception:
        return 0


4.10 可选修改

有些读者的数据集部分图片比较特殊,在验证的时候会导致形状不匹配的报错,如果大家在验证的时候报错形状不匹配的错误可以固定验证集的图片尺寸,方法如下 ->

找到下面这个文件ultralytics/models/yolo/detect/train.py然后其中有一个类是DetectionTrainer class中的build_dataset函数中的一个参数rect=mode == 'val'改为rect=False


五、ConvNeXt V2的yaml文件

5.1 yaml文件

大家复制下面的yaml文件,然后通过我给大家的运行代码运行即可,RT-DETR的调参部分需要后面的文章给大家讲,现在目前免费给大家看这一部分不开放。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, convnextv2_atto, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256, 0.5]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


5.2 运行文件

大家可以创建一个train.py文件将下面的代码粘贴进去然后替换你的文件运行即可开始训练。

import warnings
from ultralytics import RTDETR
warnings.filterwarnings('ignore')

if __name__ == '__main__':
    model = RTDETR('替换你想要运行的yaml文件')
    # model.load('') # 可以加载你的版本预训练权重
    model.train(data=r'替换你的数据集地址即可',
                cache=False,
                imgsz=640,
                epochs=72,
                batch=4,
                workers=0,
                device='0',
                project='runs/RT-DETR-train',
                name='exp',
                # amp=True
                )


5.3 成功训练截图

下面是成功运行的截图(确保我的改进机制是可用的),已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


六、全文总结

从今天开始正式开始更新RT-DETR剑指论文专栏,本专栏的内容会迅速铺开,在短期呢大量更新,价格也会乘阶梯性上涨,所以想要和我一起学习RT-DETR改进,可以在前期直接关注,本文专栏旨在打造全网最好的RT-DETR专栏为想要发论文的家进行服务。

 专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1409958.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flink Checkpoint 超时问题和解决办法

第一种、计算量大&#xff0c;CPU密集性&#xff0c;导致TM内线程一直在processElement&#xff0c;而没有时间做CP【过滤掉部分数据&#xff1b;增大并行度】 代表性作业为算法指标-用户偏好的计算&#xff0c;需要对用户在商城的曝光、点击、订单、出价、上下滑等所有事件进…

python-自动篇-运维-根据计算机硬盘、主板、CPU生成注册信息

文章目录 准备代码效果 准备 本实例需要使用WMI模块&#xff0c;所以需要安装WMI模块。在安装WMI模块之前&#xff0c;先要安装pywin32模块&#xff0c;WMI模块需要win32api的支持。使用pip安装pywin32模块和WMI模块的代码如下&#xff1a; pip install win32com pip install …

多元跨界、戮力谐老!2024深圳国际户外运动展览会再创运动生活新方式

COSP Shenzhen 2024国际户外运动用品与时尚展 2024年3.14-16日 深圳会展中心(福田馆&#xff09; COSP Shanghai 2024国际户外运动用品与时尚展 2024年9.05-07日 上海世博展览馆&#xff08;浦东&#xff09; 展会概述&#xff1a; 作为国内最具影响力的户外运动展会之一…

《WebKit 技术内幕》学习之七(2): 渲染基础

2 网页层次和RenderLayer树 2.1 层次和RenderLayer对象 前面章节介绍了网页的层次结构&#xff0c;也就是说网页是可以分层的&#xff0c;这有两点原因&#xff0c;一是为了方便网页开发者开发网页并设置网页的层次&#xff0c;二是为了WebKit处理上的便利&#xff0c;也就是…

山海鲸可视化智慧林业解决方案

作为山海鲸可视化的核心开发团队成员&#xff0c;在钻研为大家做出免费好用数字孪生产品的路上孜孜不倦&#xff0c;同时为了提高大家的应用效率&#xff0c;为各行业可视化提供思路&#xff0c;我们也在配合推出各行解决方案案例。今天&#xff0c;为大家介绍我们的林业数字孪…

激活微软Office

1、在这里下载office tool plus&#xff0c;https://otp.landian.vip/zh-cn/ 2、清除掉之前的激活信息 3、按下快捷键 Ctrl Shift P&#xff0c;打开命令框&#xff0c;复制下面的命令执行 ospp /inslicid MondoVolume /sethst:kms.loli.beer /setprt:1688 /act 4、激活成…

Linux本地部署MeterSphere测试平台并实现公网远程访问

文章目录 前言1. 安装MeterSphere2. 本地访问MeterSphere3. 安装 cpolar内网穿透软件4. 配置MeterSphere公网访问地址5. 公网远程访问MeterSphere6. 固定MeterSphere公网地址 前言 MeterSphere 是一站式开源持续测试平台, 涵盖测试跟踪、接口测试、UI 测试和性能测试等功能&am…

答案之书程序改良版本

答案之书程序改良版本 C#代码实现 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms;namespace …

架构师之路(十四)计算机网络(网络层)

前置知识&#xff08;了解&#xff09;&#xff1a;计算机基础。 作为架构师&#xff0c;我们所设计的系统很少为单机系统&#xff0c;因此有必要了解计算机和计算机之间是怎么联系的。局域网的集群和混合云的网络有啥区别。系统交互的时候网络会存在什么瓶颈。 网络层提供主机…

45. 跳跃游戏 II - 力扣(LeetCode)

题目描述 给定一个非负整数数组&#xff0c;你最初位于数组的第一个位置。 数组中的每个元素代表你在该位置可以跳跃的最大长度。 你的目标是使用最少的跳跃次数到达数组的最后一个位置。 题目示例 输入: [2,3,1,1,4] 输出: 2 解释: 跳到最后一个位置的最小跳跃数是 2。从下标…

算法基础之树状数组

文章目录 树状数组 树状数组 树状数组能解决的最关键的问题就是能够 O ( log ⁡ n ) O(\log n) O(logn)内&#xff0c;给某个位置上的数&#xff0c;加上一个数&#xff0c;或者求前缀和 他和前缀和数组的区别就是&#xff0c;树状数组支持修改原数组的内容&#xff0c;而前缀…

web安全学习笔记【09】——算法2

基础[1] 入门-算法逆向&散列对称非对称&JS源码逆向&AES&DES&RSA&SHA #知识点&#xff1a; 1、Web常规-系统&中间件&数据库&源码等 2、Web其他-前后端&软件&Docker&分配站等 3、Web拓展-CDN&WAF&OSS&反向&负载…

Allegro PCB如何关联原理图?

在用Allegro进行PCB设计时,我们可以点击Orcad原理图上的器件,然后PCB会自动跳转到该器件。那如何操作PCB上的器件点击跳转到原理图呢? 这种方式可以提高设计的效率。具体操作如下。 选择菜单栏Display

springboot农机电招平台源码和论文

随着农机电招行业的不断发展&#xff0c;农机电招在现实生活中的使用和普及&#xff0c;农机电招行业成为近年内出现的一个新行业&#xff0c;并且能够成为大群众广为认可和接受的行为和选择。设计农机电招平台的目的就是借助计算机让复杂的销售操作变简单&#xff0c;变高效。…

node多版本管理工具nvm安装

开发前端项目&#xff0c;有时候新老项目交替&#xff0c;不同项目需要不同的node.js&#xff0c;本机电脑需要安装多个版本的nodejs&#xff0c;手动切换十分麻烦&#xff0c;有了nvm就可以轻松解决这个问题&#xff0c;nvm全名node.js version management 它是一个nodejs的版…

使用redisson控制多个springboot实例负载同时只有一个实例执行任务

一 redisson依赖 <!-- redisson 依赖--><dependency><groupId>org.redisson</groupId><artifactId>redisson-spring-boot-starter</artifactId><version>3.23.4</version></dependency> 二 定时任务代码 pack…

1、【vue篇】vue框架快速上手

注意事项&#xff1a; methods必须要加s 导入vue&#xff1a;<script src"https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>导入Axios:<script src"https://unpkg.com/axios/dist/axios.min.js"></script> 简单Vue程序…

【grafana】使用教程

【grafana】使用教程 一、简介二、下载及安装及配置三、基本概念3.1 数据源&#xff08;Data Source&#xff09;3.2 仪表盘&#xff08;Dashboard&#xff09;3.3 Panel&#xff08;面板&#xff09;3.4 ROW&#xff08;行&#xff09;3.5 共享及自定义 四、常用可视化示例4.1…

探索编程世界的利器!选择哪个IDE,成就新手开发之路?

文章目录 一、IDE的概念和作用IDE是什么&#xff1f;为什么说选择一款IDE对开发者来说可以起到事半功倍的作用&#xff1f; 二、当下备受推崇的IDE有哪些&#xff1f;1. Visual Studio Code2. PyCharm3. IntelliJ IDEA 三、如何选择一个适合自己的IDE&#xff1f;四、IDE的使用…

1.17堆模板,黑匣子(对顶堆应用,找动态第i大的数),合并果子(哈夫曼树),荷马史诗(多叉哈夫曼树,补空叶子结点)

二叉堆树状数组 P3378 【模板】堆 向上调整唯一&#xff0c;向下调整要看孩子 #include<iostream> #include<iomanip> #include<vector> #include<string> using namespace std; const int maxn 1e6 3; int h[maxn], n, op, num, cnt 0; void swa…