JVM/GC复习1---更新中

news2024/9/24 13:23:42

JVM/GC

  • JVM
  • GC
    • 垃圾回收算法
      • 1.引用计数法
      • 2.标记清除发
      • 3.标记压缩算法
      • 4.复制算法
      • 5.分代算法
    • 收集器
      • 1.串行垃圾收集器
      • 2.并行垃圾收集器
      • 2.CMS垃圾收集器
    • 3.G1垃圾收集器(重点)jdk1.7开始1.9默认的回收器
      • Young GC模式
      • Mixed GC
      • Full GC

JVM

待更新中ing

GC

垃圾回收:程序运行的时候必然需要申请内存的资源,无效的对象资源如果不及时进行处理的就会一直占用内存资源,最终导致内存溢出
java语言中有自动的垃圾回收机制就是GC

垃圾回收算法

1.引用计数法

原理:假设有一个对象A,任何一个对象对A的引用,那么对象A的引用计数器+1,当引用失败的时候,对象A的引用计数器就-1,如果对象A的计数器值为0,就是说明A没有被引用,可以被回收了


优点:
1.实用性较高,无需等到内存不够的时候,才可以进行回收,运行的时候根据对象的计数器是否为0,就可以直接进行回收了
2.在垃圾回收的过程中,引用无需挂起,如果申请内存的时候内存不足,则会立即outofmenber错误
3.区域性,更新对象的计数器的时候,只是影响到该对象,不会扫描全部的对象


缺点:
1.对象每次被引用的时候,都需要去更新计数器,有一定时间的开销
2.浪费cpu资源,即使是内存足够的情况下,任然运行时进行着计数器的统计
3.无法解决循环引用的问题(最大的缺点)

循环引用
A a = new A();
B b = new B();
a.b=b;
b.a=a;
a=null;
b=null;

2.标记清除发

是将垃圾护手分为2个阶段,分别为标记和清除
1.标记:从根节点开始标记引用的对象
2.清除:未被标记引用的对象就是垃圾回收对象,可以被清理
暂停程序线程,没有被标记的对象会被回收清除掉然后被标记的对象留下来并进行重置变为未标记的状态,恢复程序线程,程序继续运行


优点:
1.解决了循环引用的问题


缺点:
1.效率比较低,标记和清除2个动作都是需要遍历所有的对象,并且再GC的时候需要暂停应用程序,对于交互性要求高的应用而言这个体验是非常差的
2.通过标记清除的算法清理出来的内存,碎片化比较严重,因为被回收的对象可能存在于内存的各个角落,所以清理出来内存是不连贯的

3.标记压缩算法

再标记清除算法的基础之上做的优化,和标记清除算法一样,也是从根节点开始,对对象的应用进行标记,在清理的阶段,并不是简单地清理未标记的对象,而是将存货的对象压缩到哦内存的一段,然后清理边界意外的垃圾,从而解决碎片化的问题
在这里插入图片描述


优点:解决了标记清除法里面而定碎片化问题
缺点:标记压缩算法多了一个压缩的步骤,这样就会导致其中的清除的整体效率受到了影响

4.复制算法

复制算法的核心是:将原有的内存空间一分为二,每次只用到其中的一块,在垃圾回收的时候,将正在使用的对象复制到另一个内存空间中,然后将该内存空间清空,交换内存的角色,完成垃圾回收
如果内存的垃圾对象比较多的情况下需要复制的对象比较少,这种情况下是和使用这个方式并且效率比较高反之不适用
在这里插入图片描述


优点:
1.在垃圾对象多的情况下,效率高
2.清理以后,内存无碎片


缺点:
1.再垃圾对象少的时候不适合
2.分配的2块内存空间,再同一时刻只能使用一半,内存使用率较低

5.分代算法

分代算法指的是根据回收对象的特点进行选择,再jvm中,年轻代适合复制算法,老年代适合标记清除或者标记压缩算法

算法优点缺点说明
引用计数法1.实用性较高,无需等到内存不够的时候,才可以进行回收,运行的时候根据对象的计数器是否为0,就可以直接进行回收了 2.在垃圾回收的过程中,引用无需挂起,如果申请内存的时候内存不足,则会立即outofmenber错误 3.区域性,更新对象的计数器的时候,只是影响到该对象,不会扫描全部的对象1.对象每次被引用的时候,都需要去更新计数器,有一定时间的开销2.浪费cpu资源,即使是内存足够的情况下,任然运行时进行着计数器的统计 3.无法解决循环引用的问题(最大的缺点)假设有一个对象A,任何一个对象对A的引用,那么对象A的引用计数器+1,当引用失败的时候,对象A的引用计数器就-1,如果对象A的计数器值为0,就是说明A没有被引用,可以被回收了
标记清除算法1.解决了循环引用的问题1.效率比较低,标记和清除2个动作都是需要遍历所有的对象,并且再GC的时候需要暂停应用程序,对于交互性要求高的应用而言这个体验是非常差的 2.通过标记清除的算法清理出来的内存,碎片化比较严重,因为被回收的对象可能存在于内存的各个角落,所以清理出来内存是不连贯的是将垃圾护手分为2个阶段,分别为标记和清除1.标记:从根节点开始标记引用的对象2.清除:未被标记引用的对象就是垃圾回收对象,可以被清理;暂停程序线程,没有被标记的对象会被回收清除掉然后被标记的对象留下来并进行重置变为未标记的状态,恢复程序线程,程序继续运行
标记压缩算法解决了标记清除法里面而定碎片化问题标记压缩算法多了一个压缩的步骤,这样就会导致其中的清除的整体效率受到了影响再标记清除算法的基础之上做的优化,和标记清除算法一样,也是从根节点开始,对对象的应用进行标记,在清理的阶段,并不是简单地清理未标记的对象,而是将存货的对象压缩到哦内存的一段,然后清理边界意外的垃圾,从而解决碎片化的问题
复制算法1.在垃圾对象多的情况下,效率高 2.清理以后,内存无碎片1.再垃圾对象少的时候不适合 2.分配的2块内存空间,再同一时刻只能使用一半,内存使用率较低将原有的内存空间一分为二,每次只用到其中的一块,在垃圾回收的时候,将正在使用的对象复制到另一个内存空间中,然后将该内存空间清空,交换内存的角色,完成垃圾回收
分代算法分代算法指的是根据回收对象的特点进行选择,再jvm中,年轻代适合复制算法,老年代适合标记清除或者标记压缩算法

收集器

参数说明
-XX:UseSerialGC指定的年轻代和老年代都使用串行垃圾收集器
-XX:+PrintGCDetails打印垃圾回收的详细信息
-XX:UseParallelGC年轻代使用ParallelGC垃圾回收期,老年代使用串行回收器
-XX:UseParallelOldGC年轻代使用ParallelGC垃圾回收期,老年代使用ParallelOld垃圾回收器
-XX:MaxGCPauseMillis(设置最大的垃圾收集时候的停顿时间,单位毫秒,需要注意的是ParallelGC为了达到设置的停顿时间,可能会调整堆的大小或者其他的参数,如果堆的大小设置的比较小,就会导致GC工作变得很频繁,反而可能会影响到性能,这个参数使用的时候需要谨慎处理)
-XX:GCTimeRatio(设置垃圾回收时间占程序运行时间的百分比,公式:1/(1+n),他的值为0~100之间的数字,默认值为99,也就是垃圾回收事假不能超过1%)
-XX:UseAdaptiveSizePolicy(自适应GC模式,垃圾回收器将会自动的调整新生代,老年代等参数,达到吞吐量,堆大小,停顿时间之间的平衡;一般用于手动的调整比较困难的场景,让收集器自动的进行调整)

在这里插入图片描述

参数解读冒号后面的内容解释
DefNew表示使用的是串行垃圾收集器4416K->512K(4928K)====>表示年轻代GC占用的内存是4416K内存,GC之后占用512K内存总大小4928K;0.0046102 secs =====>表示的是GC所用的时间单位毫秒 ;
-XX:+PrintGCDetails打印垃圾回收的详细信息

1.串行垃圾收集器

指的是单线程进行的垃圾回收,垃圾回收的时候只有一个线程在进行工作,并且java应用中的所有的线程都需要进行暂停,等待垃圾回收的完成这个现象叫做STW-----这个应用的场景特别少
在程序运行的过程中添加2个参数即可
1.-XX:+UseSerialGC(指定的年轻代和老年代都使用串行垃圾收集器)
2.-XX:+PrintGCDetails(打印垃圾回收的详细信息)
在这里插入图片描述

//设置堆的初始和最大内存值为16M  串行收集器
-XX:+UseSerialGC -XX:+PrintGCDetails -Xms16m -Xmx16m

2.并行垃圾收集器

并行的垃圾收集器再创航的垃圾收集器的基础上做的改进,将单线程改为多线程的垃圾回收,这样缩短回收的时间,这里的手机过程也是会暂停应用程序的


1.ParNew垃圾收集器
ParNew垃圾收集器是工作再年轻代上的,只是将串行的垃圾收集器改为并行的
通过:-XX:+UseParNewGC参数设置年轻代使用ParNew回收期,老年代使用的依然是串行收集器
在这里插入图片描述


2.ParallelGC垃圾收集器
ParallelGC收集器工作机制和ParNew收集器一样,只是在此基础上,新增了2个和系统吞吐量相关的参数,使得其使用起来更加的灵活和高效
相关参数:
-XX:UseParallelGC(年轻代使用ParallelGC垃圾回收期,老年代使用串行回收器)
-XX:UseParallelOldGC(年轻代使用ParallelGC垃圾回收期,老年代使用ParallelOld垃圾回收器)
-XX:MaxGCPauseMillis(设置最大的垃圾收集时候的停顿时间,单位毫秒,需要注意的是ParallelGC为了达到设置的停顿时间,可能会调整堆的大小或者其他的参数,如果堆的大小设置的比较小,就会导致GC工作变得很频繁,反而可能会影响到性能,这个参数使用的时候需要谨慎处理)
-XX:GCTimeRatio(设置垃圾回收时间占程序运行时间的百分比,公式:1/(1+n),他的值为0~100之间的数字,默认值为99,也就是垃圾回收事假不能超过1%)
-XX:UseAdaptiveSizePolicy(自适应GC模式,垃圾回收器将会自动的调整新生代,老年代等参数,达到吞吐量,堆大小,停顿时间之间的平衡;一般用于手动的调整比较困难的场景,让收集器自动的进行调整)

在这里插入图片描述

2.CMS垃圾收集器

是一款并发,使用标记清除算法的垃圾回收器该回收器是针对老年代垃圾回收的,通过参数-XX:+UseConcMarkSweepGC进行设置的
CMS垃圾回收器的执行过程如下
在这里插入图片描述
初始化标记:标记root,会导致stw(程序暂停上面有解释)
并发标记,与用户线程同时运行
预清理与用户线程同时运行
重新标记,会导致stw
并发清除,与用户线程同时运行
调整堆大小,设置CMS再清理之后进行内存压缩,目的是清理内存中的碎片
并发重置状态等待下次CMS的触发,与用户线程同时运行
在这里插入图片描述

3.G1垃圾收集器(重点)jdk1.7开始1.9默认的回收器

G1的设计原则就是简化jvm性能调优,三步调优
1.开启G1垃圾收集器
2.设置堆的最大内存
3.设置最大的停顿时间
三种模式Young GC ,Mixed GC 和Full GC


相比于其他的垃圾收集器,最大的区别在于他取消了年轻代,老年代的物理划分,取而代之的是将堆划分为若干个区域,这些区域中包含了有逻辑上的年轻代和老年代区域
这样做的好处就是,不需要单独的空间对每一个代进行设置,不需要担心每个代内存是否足够的问题
在这里插入图片描述
在G1划分的区域中,年轻代的垃圾收集器依然是采用stw的方式,将存活对象拷贝到老年代或者Survivor空间,G1收集器通过将对象从一个区域复制到另外一个区域完成清理的工作
这就意味着在正常处理过程中,G1完成了堆的压缩,这样也就不会有cms内存碎片的问题存在了
Humongous
1.如果一个对象占用的空间超过了分区容量的50%以上,G1收集器就认为这是一个巨型对象
2.这些巨型对象,默认直接会被分配到老年代,但是如果他是一个短期存在的巨型对象,就会对垃圾收集器造成负面的影响
3.为了解决这个问题,G1划分了一个Humongous区,他是专门的存放巨型对象的,如果一个H村放不下巨型对象,那么就会寻找连续的H分区来进行存储,为了能找到连续的H区有时候就得启动Full GC

Young GC模式

在这里插入图片描述

主要是对Eden区进行GC,他在Eden空间耗尽时候会被触发
1.Eden空间的数据移动到Survivor空间中,如果Survivor空间不够,Eden空间的部分数据会直接晋升为老年代空间
2.Survivor区的数据移动到新的Survivor区中,也会有部分的数据晋升为老年代空间中
3.最终Eden空间的数据为空,GC停止空间,应用线程继续执行

Mixed GC

Full GC

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1408964.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2024年美赛数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…

【JSON2WEB】03 go的模板包html/template的使用

Go text/template 是 Go 语言标准库中的一个模板引擎,用于生成文本输出。它使用类似于 HTML 的模板语言,可以将数据和模板结合起来,生成最终的文本输出。 Go html/template包实现了数据驱动的模板,用于生成可防止代码注入的安全的…

一文掌握Shell

文章目录 Shell概述脚本的常用执行方式Linux中的sh解释器Linux中的/etc 编写sh脚本第一个sh脚本变量1. 系统预定义变量2. 自定义变量3. 变量定义规则单引号和双引号的区别 4. 特殊变量 运算符命令替换条件判断常用判断语句 流程控制if语句case语句while循环 read读取控制台输入…

生产、计划、仓库、质量,一大堆的工厂数据要怎么收集?MES系统替你解决!

随着制造业的发展和进步,工厂运营面临着越来越多的挑战,特别是在数据管理和生产过程控制方面。生产、计划、仓库、质量等方面的数据分散在各个系统和部门中,数据的收集和分析变得复杂而困难。然而,MES系统为工厂提供了一个综合性解…

成功安装DCNv4

最终结果 终于安装成功了。 环境 系统:ubuntu22.04 CUDA:12.1 python:3.11 显卡驱动:545 安装过程 系统、CUDA和python的安装过程忽略,这些都能找到。这里只写不同的地方。 配置CUDAHOME 执行命令“ gedit ~/…

余弦定理是怎么推导的?

余弦定理是怎么推导的? 已知余弦定理(low of cosines)表达如下: A B 2 = B C 2 + A C 2 − 2 B C ∗ A C ∗ cos ⁡ θ AB^2=BC^2+AC^2-2BC*AC*\cos \theta AB2=BC2+AC2−2BC∗AC∗cosθ,其中 A B , B C , A C AB,BC,AC AB,BC,AC和 θ \theta θ的关系如下: 那么这个公式是…

数据库缓存策略

数据库缓存策略 以下是数据库与缓存的五种常见策略。 1缓存旁路 缓存旁路(Cache-Aside) 在缓存旁路策略中,数据库缓存位于数据库旁边。当应用程序请求数据时,它会首先检查缓存 如果缓存中存在数据(缓存命中&#xff…

风速预测 | Python基于CEEMDAN-CNN-Transformer+ARIMA的风速时间序列预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 CEEMDAN-CNN-TransformerARIMA是一种用于风速时间序列预测的模型,结合了不同的技术和算法。收集风速时间序列数据,并确保数据的质量和完整性。这些数据通常包括风速的观测值和时间戳。CEEMDAN分…

SpringCloudAlibaba系列之Nacos实战

目录 注意事项 参考资源 Nacos配置中心 初始化项目 进行Nacos相关配置 运行 Nacos注册中心 dubbo方式 对外暴露接口dubbo-api 服务提供者dubbo-provider 服务消费者dubbo-consumer 负载均衡客户端方法 服务提供者 服务消费者 注意事项 不管是使用Nacos配置中心&…

使用POI生成word文档的table表格

文章目录 使用POI生成word文档的table表格1. 引入maven依赖2. 生成table的两种方式介绍2.1 生成一行一列的table2.2 生成固定行列的table2.3 table合并列2.4 创建多个table存在的问题 使用POI生成word文档的table表格 1. 引入maven依赖 <dependency><groupId>org.…

智能家居20年,从「动手」到「用脑」

【潮汐商业评论/原创】 正在装修新家的Carro最近陷入了纠结之中&#xff0c;“还没想好要怎么装一套完整的智能家居&#xff0c;家里的基装就已经开始了。” 事实上&#xff0c;Carro对智能家居也不了解&#xff0c;并不知道该如何下手&#xff0c;心想“要是能一次性设计好就…

鸿蒙常用UI效果及一些处理方式总结

前言&#xff1a; DevEco Studio版本&#xff1a;4.0.0.600 详细使用介绍 1、Text的一些常用设置 Text(this.message).fontSize(50)//字体大小.fontColor(Color.White)//字体颜色.fontWeight(FontWeight.Bold)//字体加粗.backgroundColor(Color.Black)//背景颜色.fontStyle(…

利用Python实现科学式占卜

一直以来,中式占卜都是基于算命先生手工实现,程序繁琐(往往需要沐浴、计算天时、静心等等流程)。准备工作复杂(通常需要铜钱等道具),计算方法复杂,需要纯手工计算二进制并转换为最终的卦象,为了解决这个问题,笔者基于python实现了一套科学算命工具,用于快速进行占卜…

IDEA导出jar

1、选择导出方式 2、选择Main Class 3、构建jar

数据结构与算法教程,数据结构C语言版教程!(第五部分、数组和广义表详解)七

第五部分、数组和广义表详解 数组和广义表&#xff0c;都用于存储逻辑关系为“一对一”的数据。 数组存储结构&#xff0c;99% 的编程语言都包含的存储结构&#xff0c;用于存储不可再分的单一数据&#xff1b;而广义表不同&#xff0c;它还可以存储子广义表。 本章重点从矩阵…

java复习篇 数据结构:链表第二节 哨兵

目录 单向链表哨兵 初始 头插 思路 代码 尾插 思路 遍历 遍历验证头插 尾插代码 尾插测试 get 思路 代码 测试 insert 思路 代码 测试 remove 移除头结点 提问 移除指定位置 测试 单向链表哨兵 单向链表里面有一个特殊的节点称为哨兵节点&#xff0c;…

[pytorch入门] 2. tensorboard

tensorboard简介 TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中.但是也可以独立安装&#xff0c;服务Pytorch等其他的框架 可以常常用来观察训练过程中每一阶段如何输出的 安装pip install tensorboard启动tensorboard --logdir<d…

redis-发布缓存

一.redis的发布订阅 什么 是发布和订阅 Redis 发布订阅 (pub/sub) 是一种消息通信模式&#xff1a;发送者 (pub) 发送消息&#xff0c;订阅者 (sub) 接收消息。 Redis 客户端可以订阅任意数量的频道。 Redis的发布和订阅 客户端订阅频道发布的消息 频道发布消息 订阅者就可…

MATLAB知识点:mode :计算众数

​讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 节选自第3章 3.4.1节 mode &#xff1a;计算众数 众数是指一…

量子网络是什么

量子网络是基于量子力学规律对量子信息进行存储、处理和传输的物理装置&#xff0c;是实现量子通讯和大规模量子计算的基础。清华大学研究团队利用同种离子的双类型量子比特编码&#xff0c;在国际上首次实现无串扰的量子网络节点&#xff0c;对未来实现量子通讯和大规模量子计…