文章目录
- 二叉树基础
- 二叉树种类
- 满二叉树
- 完全二叉树
- 二叉搜索树
- 平衡二叉搜索树
- 二叉树的存储方式
- 链式存储
- 顺序存储
- 二叉树的遍历方式
- 二叉树的定义
- 二叉树的递归遍历
- 144.二叉树的前序遍历
- 代码:
- 145.二叉树的后序遍历
- 代码:
- 94. 二叉树的中序遍历
- 代码
- 二叉树的迭代遍历
- 前序遍历(迭代法)-中左右->中右左(模拟出入栈)
- 代码
- 后序遍历(迭代法)
- 思路:
- 代码:
- 中序遍历(迭代法)
- 代码:
- 二叉树的统一迭代法-画图理解增加熟练
- 前序遍历写法-右左中(反过来)
- 中序遍历写法-右中左
- 后序遍历-中右左
二叉树基础
二叉树种类
满二叉树
完全二叉树
二叉搜索树
平衡二叉搜索树
二叉树的存储方式
链式存储
顺序存储
二叉树的遍历方式
二叉树主要有两种遍历方式:
- 深度优先遍历:先往深走,遇到叶子节点再往回走。
- 广度优先遍历:一层一层的去遍历。
这两种遍历是图论中最基本的两种遍历方式,后面在介绍图论的时候 还会介绍到。
那么从深度优先遍历和广度优先遍历进一步拓展,才有如下遍历方式:
- 深度优先遍历
- 前序遍历(递归法,迭代法)
- 中序遍历(递归法,迭代法)
- 后序遍历(递归法,迭代法)
- 广度优先遍历
- 层次遍历(迭代法)
在深度优先遍历中:有三个顺序,前中后序遍历, 有同学总分不清这三个顺序,经常搞混,我这里教大家一个技巧。
- 层次遍历(迭代法)
这里前中后,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。
看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式
- 前序遍历:中左右
- 中序遍历:左中右
- 后序遍历:左右中
二叉树的定义
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
二叉树的递归遍历
144.二叉树的前序遍历
前序遍历,中左右
代码:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();//结果数组
preorder(root,result);//开始从根节点遍历
return result;
}
public void preorder(TreeNode root,List<Integer> res){
if(root==null){
return; //直接返回
}
res.add(root.val);//添加根节点
preorder(root.left,res);
preorder(root.right,res);
}
}
145.二叉树的后序遍历
左右中
代码:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
postOrder(root,res);
return res;
}
public void postOrder(TreeNode root,List<Integer> res){
if(root==null){
return;
}
postOrder(root.left,res);
postOrder(root.right,res);
res.add(root.val);
}
}
94. 二叉树的中序遍历
左中右
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
inOrder(root,res);
return res;
}
public void inOrder(TreeNode root,List<Integer> res){
if(root==null){
return;
}
inOrder(root.left,res);
res.add(root.val);
inOrder(root.right,res);
}
}
二叉树的迭代遍历
前序遍历(迭代法)-中左右->中右左(模拟出入栈)
我们先看一下前序遍历。
前序遍历是中左右,每次先处理的是中间节点,
那么先将根节点放入栈中,
然后先将右孩子加入栈,再加入左孩子。
为什么要先加入 右孩子,再加入左孩子呢? 因为这样出栈的时候才是中左右的顺序。
动画如下:
代码
// 前序遍历顺序:中-左-右,入栈顺序:中-右-左
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res=new ArrayList<>();
if(root==null){
return res;
}
Stack<TreeNode> stack=new Stack<>();
stack.push(root);//加入根节点
while(!stack.isEmpty()){
//中
TreeNode node=stack.pop();//弹出根节点
res.add(node.val);//储存根节点的数值
//右
if(node.right!=null){
stack.push(node.right);
}
//左
if(node.left!=null){
stack.push(node.left);
}
}
return res;
}
}
后序遍历(迭代法)
思路:
前序遍历的数组储存是中左右,那么把函数翻转,则变成数组储存是中右左,再将数组进行翻转,则变成左右中。
代码:
// 后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左, 最后翻转结果
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
Stack<TreeNode> stack=new Stack<>();
if(root==null){
return res;
}
stack.push(root);
while(!stack.isEmpty()){
TreeNode node = stack.pop();
res.add(node.val);
if(node.left!=null){
stack.push(node.left);
}
if(node.right!=null){
stack.push(node.right);
}
}
Collections.reverse(res);//反转数组
return res;
}
}
中序遍历(迭代法)
为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:
- 处理:将元素放进result数组中
- 访问:遍历节点
分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。
那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。
那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
动画如下:
代码:
// 中序遍历顺序: 左-中-右 入栈顺序: 左-右
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null){
return result;
}
Stack<TreeNode> stack = new Stack<>();
TreeNode cur = root;
while (cur != null || !stack.isEmpty()){
if (cur != null){
stack.push(cur);
cur = cur.left;
}else{
cur = stack.pop();
result.add(cur.val);
cur = cur.right;
}
}
return result;
}
}
二叉树的统一迭代法-画图理解增加熟练
前序遍历写法-右左中(反过来)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new LinkedList<>();
Stack<TreeNode> stack = new Stack<>();
if(root!=null){
stack.push(root);
}
while(!stack.isEmpty()){
TreeNode node=stack.peek();//栈中的第一个节点
if(node!=null){
stack.pop();//弹出避免重复,下面再将右左中节点添加到栈中
if(node.right!=null){//添加右节点,空节点不入栈
stack.push(node.right);
}
if(node.left!=null){//添加左节点,空节点不入栈
stack.push(node.left);
}
stack.push(node);//添加中节点
stack.push(null);//中节点还没有处理,添加空节点null做标记
}else{
stack.pop();//弹出null
node=stack.peek();//重新取出栈中元素
stack.pop();//取出后再弹出
res.add(node.val);
}
}
return res;
}
}
中序遍历写法-右中左
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
if(root!=null){//先放入根节点
stack.push(root);
}
while(!stack.isEmpty()){
TreeNode node = stack.peek();//查找第一个结点
if(node!=null){
stack.pop();//弹出重复节点,按顺序放入右中左
if(node.right!=null){
stack.push(node.right);
}
stack.push(node);
stack.push(null);
if(node.left!=null){
stack.push(node.left);
}
}else{
stack.pop();
node = stack.peek();
stack.pop();
res.add(node.val);
}
}
return res;
}
}
后序遍历-中右左
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
if(root!=null){//先放入根节点
stack.push(root);
}
while(!stack.isEmpty()){
TreeNode node = stack.peek();//查找第一个结点
if(node!=null){
stack.pop();//弹出重复节点,按顺序放入中右左
stack.push(node);
stack.push(null);
if(node.right!=null){
stack.push(node.right);
}
if(node.left!=null){
stack.push(node.left);
}
}else{
stack.pop();
node = stack.peek();
stack.pop();
res.add(node.val);
}
}
return res;
}
}