【大数据】Flink 系统架构

news2025/1/22 8:13:35

Flink 系统架构

  • 1.Flink 组件
    • 1.1 JobManager
    • 1.2 ResourceManager
    • 1.3 TaskManager
    • 1.4 Dispatcher
  • 2.应用部署
    • 2.1 框架模式
    • 2.2 库模式
  • 3.任务执行
  • 4.高可用设置
    • 4.1 TaskManager 故障
    • 4.2 JobManager 故障

Flink 是一个用于状态化并行流处理的分布式系统。它的搭建涉及多个进程,这些进程通常会分布在多台机器上。分布式系统需要应对的常见挑战包括 分配和管理集群计算资源进程协调持久且高可用的数据存储故障恢复 等。

Flink 并没有依靠自身实现所有上述功能,而是在已有集群基础设施和服务之上专注于它的核心功能:分布式数据流处理。Flink 和很多集群管理器(如 Apache Mesos、YARN 及 Kubernetes)都能很好地集成;同时它也可以通过配置,作为独立集群来运行。Flink 没有提供分布式持久化存储,而是利用了现有的分布式文件系统(如 HDFS)或对象存储(如 S3)。它依赖 Apache ZooKeeper 来完成高可用性设置中的领导选举工作。

本篇博客我们将介绍搭建 Flink 时所涉及的不同组件并讨论它们在应用运行时的交互过程。我们主要讨论两类部署 Flink 应用的方式以及它们如何分配和执行任务。最后,我们将解释 Flink 高可用模式的工作原理。

1.Flink 组件

Flink 的搭建需要四个不同组件,它们相互协作,共同执行流式应用。这些组件是:JobManager、ResourceManager、TaskManager 和 Dispatcher。Flink 本身是用 Java 和 Scala 实现的,因此所有组件都基于 Java 虚拟机(JVM)运行。

1.1 JobManager

作为主进程(master process),JobManager 控制着单个应用程序的执行。换句话说,每个应用都由一个不同的 JobManager 掌控。JobManager 可以接收需要执行的应用,该应用会包含一个所谓的 JobGraph,即 逻辑 Dataflow 图,以及一个打包了全部所需类、库以及其他资源的 JAR 文件。JobManager 将 JobGraph 转化成名为 ExecutionGraph物理 Dataflow 图,该图包含了那些可以并行执行的任务。JobManager 从 ResourceManager 申请执行任务的必要资源(TaskManager 处理槽)。一旦它收到了足够数量的 TaskManager 处理槽(slot),就会将 ExecutionGraph 中的任务分发给 TaskManager 来执行。在执行过程中,JobManager 还要负责所有需要集中协调的操作,如创建检查点。

1.2 ResourceManager

针对不同的环境和资源提供者(resource provider)(如 YARN、Mesos、Kubernetes 或独立部署),Flink 提供了不同的ResourceManager。ResourceManager 负责管理 Flink 的处理资源单元:TaskManager 处理槽。当 JobManager 申请 TaskManager 处理槽时,ResourceManager 会指示一个拥有空闲处理槽的 TaskManager 将其处理槽提供给 JobManager。如果 ResourceManager 的处理槽数无法满足 JobManager 的请求,则 ResourceManager 可以和资源提供者通信,让它们提供额外容器来启动更多 TaskManager 进程。同时,ResourceManager 还负责终止空闲的 TaskManager 以释放计算资源。

1.3 TaskManager

TaskManager 是 Flink 的 工作进程worker process)。通常在 Flink 搭建过程中要启动多个 TaskManager。每个 TaskManager 提供一定数量的处理槽。处理槽的数目限制了一个 TaskManager 可执行的任务数。TaskManager 在启动后,会向 ResourceManager 注册 它的处理槽。当接收到 ResourceManager 的指示时,TaskManager 会向 JobManager 提供一个或多个处理槽。之后,JobManager 就可以向处理槽中分配任务来执行。在执行期间,运行同一应用不同任务的 TaskManager 之间会产生数据交换。我们将在稍后进一步讨论任务执行和处理槽的概念。

1.4 Dispatcher

Dispatcher 会跨多个作业运行,它提供了一个 REST 接口来让我们提交需要执行的应用。一旦某个应用提交执行,Dispatcher 会启动一个 JobManager 并将应用转交给它。REST 接口意味着 Dispatcher 这一集群的 HTTP 入口可以受到防火墙的保护。Dispatcher 同时还会启动一个 WebUI,用来提供有关作业执行的信息。某些应用提交执行的方式可能用不到 Dispatcher。

下图展示了应用提交执行过程中 Flink 各组件之间的交互过程。
在这里插入图片描述

上图仅是一个用于展示各组件职责与交互的高层次框架。根据环境的不同(YARN、Mesos、Kubernetes 或独立集群),图中某些步骤其实可以省略,同时也可会有多个组件运行在同一 JVM 进程中。例如:独立集群设置下没有资源提供者,因此 ResourceManager 只能分配现有 TaskManager 中的处理槽而无法自己启动新的 TaskManager。

2.应用部署

Flink应用可以通过两种模式进行部署。

2.1 框架模式

在该模式下,Flink 应用会打包成一个 JAR 文件,通过客户端提交到运行的服务上。这里的服务可以是 Flink Dispatcher,Flink JobManager 或是 YARN 的 ResourceManager。无论哪种情况,运行的服务都会接收 Flink 应用并确保其执行。如果应用提交到 JobManager,会立即开始执行;如果应用提交到 Dispatcher 或 YARN ResourceManager,它们会启动一个 JobManager 并将应用转交给它,随后由 JobManager 负责执行该应用。

2.2 库模式

在该模式下,Flink 应用会绑定到一个特定应用的容器镜像(如 Docker 镜像)中。镜像中还包含着运行 JobManager 以及 ResourceManager 的代码。当容器从镜像启动后会自动加载 ResourceManager 和 JobManager,并将绑定的作业提交执行。另一个和作业无关的镜像负责部署 TaskManager 容器。容器通过镜像启动后会自动运行 TaskManager,后者可以连接 ResourceManager 并注册处理槽。通常情况下,外部资源管理框架(如 Kubernetes)负责启动镜像,并确保在发生故障时容器能够重启。

基于框架的模式采用的是传统方式,即通过客户端提交应用(或查询)到正在运行的服务上;而在库模式中,Flink不是作为服务,而是以库的形式绑定到应用所在的容器镜像中。后者常用于微服务架构。我们会在第10章的“运行和管理流式应用”中详细讨论应用部署的相关内容。

3.任务执行

一个 TaskManager 允许同时执行多个任务。这些任务可以属于同一个算子(数据并行),也可以是不同算子(任务并行),甚至还可以来自不同的应用(作业并行)。TaskManager 通过提供固定数量的处理槽来控制可以并行执行的任务数。每个处理槽可以执行应用的一部分,即算子的一个并行任务。下图展示了 TaskManager、处理槽、任务以及算子之间的关系。
在这里插入图片描述
左侧的 JobGraph(应用的非并行化表示)包含了 5 个算子,其中算子 A 和 C 是数据源,算子 E 是数据汇。算子 C 和 E 的并行度为 2,其余算子的并行度为 4。由于算子最大并行度是 4,因此应用若要执行则至少需要 4 个处理槽。如果每个 TaskManager 内有两个处理槽,则运行两个 TaskManager 即可满足该需求。JobManager 将 JobGraph “展开成” ExecutionGraph 并把任务分配到 4 个空闲处理槽。对于并行度为 4 的算子,其任务会每个处理槽分配一个。其余两个算子 C 和 E 的任务会分别放到处理槽 1.12.1 和处理槽 1.22.2 中。将任务以切片的形式调度至处理槽中有一个好处:TaskManager 中的多个任务可以在同一进程内高效地执行数据交换而无须访问网络。然而,任务过于集中也会使 TaskManager 负载变高,继而可能导致性能下降。

TaskManager 会在同一个 JVM 进程内以多线程的方式执行任务。和独立进程相比,线程更加轻量并且通信开销更低,但无法严格地将任务彼此隔离。因此只要有一个任务运行异常,就有可能 “杀死” 整个 TaskManager 进程,导致它上面运行的所有任务都停止。如果将每个 TaskManager 配置成只有一个处理槽,则可以限制应用在 TaskManager 级别进行隔离,即每个 TaskManager 只运行单个应用的任务。通过在 TaskManager 内部采用线程并行以及在每个主机上部署多个 TaskManager 进程,Flink 为部署应用时性能和资源隔离的取舍提供了极大的自由度。我们会在后续讨论搭建和配置 Flink 集群的详细内容。

4.高可用设置

流式应用通常都会设计成 7 x 24 小时运行,因此对于它很重要的一点是:即便内部进程发生故障时也不能终止运行。为了从故障中恢复,系统首先要 重启故障进程,随后需要 重启应用并恢复其状态。接下来我们将介绍 Flink 如何重启故障进程。而恢复应用状态则会在后续有关 “检查点” 的博客中进行介绍。

4.1 TaskManager 故障

如前所述,为了执行应用的全部任务,Flink 需要足够数量的处理槽。假设一个 Flink 设置包含 4 个 TaskManager,每个 TaskManager 有 2 个处理槽,那么一个流式应用最多支持以并行度 8 来运行。如果有一个 TaskManager 出现故障,则可用处理槽的数量就降到了 6 个。这时候 JobManager 就会向 ResourceManager 申请更多的处理槽。若无法完成(例如应用运行在一个独立集群上),JobManager 将无法重启应用,直至有足够数量的可用处理槽。应用的 重启策略 决定了 JobManager 以何种频率重启应用以及重启尝试之间的等待间隔。

4.2 JobManager 故障

和 TaskManager 相比,JobManager 发生故障会更为棘手。它用于控制流式应用执行以及保存该过程中的元数据(如已完成检查点的存储路径)。如果负责管理的 JobManager 进程消失,流式应用将无法继续处理数据。这就导致 JobManager 成为 Flink 应用中的一个单点失效组件。为了解决该问题,Flink 提供了高可用模式,支持在原 JobManager 消失的情况下将作业的管理职责及元数据迁移到另一个 JobManager。

Flink 中的高可用模式是基于能够提供分布式协调和共识服务的 Apache ZooKeeper 来完成的,它在 Flink 中主要用于 “领导” 选举以及持久且高可用的数据存储。JobManager 在高可用模式下工作时,会将 JobGraph 以及全部所需的元数据(例如应用的 JAR 文件)写入一个 远程持久化存储系统 中。此外,JobManager 还会将存储位置的路径地址写入 ZooKeeper 的数据存储。在应用执行过程中,JobManager 会接收每个任务检查点的 状态句柄存储位置)。在检查点即将完成的时候,如果所有任务已经将各自状态成功写入远程存储,JobManager 就会将状态句柄写入远程存储,并将远程位置的路径地址写入 ZooKeeper。因此所有用于 JobManager 故障恢复的数据都在远程存储上面,而 ZooKeeper 持有这些存储位置的路径
在这里插入图片描述
当 JobManager 发生故障时,其下应用的所有任务都会自动取消。新接手工作的 JobManager 会执行以下步骤:

  • 1️⃣ 向 ZooKeeper 请求存储位置,以获取 JobGraph、JAR 文件及应用最新检查点在远程存储的状态句柄。
  • 2️⃣ 向 ResourceManager 申请处理槽来继续执行应用。
  • 3️⃣ 重启应用并利用最近一次检查点重置任务状态。

如果是在容器环境(如 Kubernetes)中以库模式部署运行应用,容器编排服务orchestration service)通常会自动重启故障的 JobManager 或 TaskManager 容器。当运行在 YARN 或 Mesos 上面时,Flink 的其余进程会触发 JobManager 或 TaskManager 进程重启。Flink 没有针对独立集群模式提供重启故障进程的工具,因此有必要运行一些后备 JobManager 及 TaskManager 来接管故障进程的工作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1408476.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

服务器的组成

服务器的重要结构组成 家用电脑组成: CPU、主板、内存条、显卡、硬盘、电源、风扇、网卡、显示器、机箱、键盘鼠标等等。 CPU CPU是电脑的大脑, CPU发展史: 32 位CPU:最大的内存寻址地址2^32,大约4G的大小。 CP…

【基础算法练习】二分模板

文章目录 二分模板题二分的思想C 版本的二分整数二分模板 Golang 版本的二分整数二分模板 例题:在排序数组中查找元素的第一个和最后一个位置题目描述C 版本代码Golang 版本代码 二分模板题 704. 二分查找,这道题目是最经典的二分查找,使用于…

Git操作指南

Git操作指南 Git是一款非常强大的版本控制工具,可以帮助开发者管理代码的版本、协同开发以及进行代码的发布。以下是一些常见的Git操作指南。 基本操作 初始化一个Git仓库 git init添加文件到暂存区 git add 文件名提交更改到本地仓库 git commit -m "提…

Simulink|光伏并网逆变器低电压穿越仿真模型

目录 主要内容 模型研究 1.模型总览 2.boost模块 3.Inverter模块 4.控制模块 5.信号模块 结果一览 下载链接 主要内容 该模型为光伏逆变器低电压穿越仿真模型,采用boost加NPC拓扑结构,基于MATLAB/Simulink建模仿真。模型具备中点平衡…

CentOS安装Redis教程-shell脚本一键安装配置

文章目录 前言一、Redis单机版安装教程1. 复制脚本2. 增加执行权限3. 执行脚本 二、Redis扩展集群版安装教程1. 安装Redis单机版2. 复制脚本3. 增加执行权限4. 执行脚本5. 测试6. redis_cluster.sh 命令6.1 启动Redis扩展集群6.2 停止Redis扩展集群6.3 查看Redis扩展集群节点信…

在虚拟时空对话邓中亮院士,元宇宙访谈节目强势出圈

​​2023年12月,由米果集团、浙江省元宇宙产业基地联合出品的《科技领军人物的思维模式解析》访谈节目上线。在节目制作过程中,主持人对话“国际欧亚科学院院士、北京邮电大学邓中亮教授”,全程使用蓝海创意云的“vLive虚拟直播”系统进行节目…

Dubbo 3.x源码(16)—Dubbo服务发布导出源码(5)

基于Dubbo 3.1,详细介绍了Dubbo服务的发布与引用的源码。 此前我们学习了Dubbo 3.x源码(15)—Dubbo服务发布导出源码(4),也就是Dubbo远程服务导出export方法的上半部分,也就是doLocalExport源码,将会得到一个Exporter。 现在我们…

LLM之RAG理论(七)| 高提升RAG检索的四种方法

​ RAG两大核心组件:检索和生成。本文将总结四种提高RAG系统检索质量的技术:1)子问题查询引擎(来自LlamaIndex),2)RAG-Fusion、3)RAG-end2end和4)LoRA微调。 一、L…

司铭宇老师:门店经理培训:如何成为一位卓越的门店经理

门店经理培训:如何成为一位卓越的门店经理 在激烈的市场竞争中,门店经理作为门店的灵魂人物,肩负着提升门店业绩、维护品牌形象、带领团队成长等重要职责。本文将为您解析如何成为一位卓越的门店经理,助力您的职业生涯迈向新高峰…

5个程序员可以接私活的平台和一些建议

22年之前我从没有接触过程序员外包接单,也没有任何的私活接单经验,就纯纯看自己瞎摸索,通过Google搜索,在各类程序员私活接单平台上摸爬滚打,硬是杀出一条血路,从一开始的年入3k到现在每月稳定收入1w&#…

【排序算法】C语言实现归并排序,包括递归和迭代两个版本

文章目录 🚀前言🚀归并排序介绍及其思想🚀递归实现🚀迭代实现 🚀前言 大家好啊!阿辉接着更新排序算法,今天要讲的是归并排序,这里阿辉将讲到归并排序的递归实现和迭代实现&#xff…

AI服务器行业分析:预计2023年全球市场规模将达211亿美元

AI服务器需求暴增,机构指出,AI时代浪潮汹涌,海量数据催生庞大的算力需求,带动AI服务器需求量与日俱增,用于服务器内、外部数据传输等接口芯片也随之攀升。 ChatGPT大火后,各大科技企业纷纷发力AI大模型&…

Vue的生命周期方法

beforeCreate 在实例初始化之后,数据观测(data observe)和 event/watcher 事件配置之前被调用。在当前阶段 data、methods、computed 以及 watch 上的数据和方法都不能被访问。 created 实例已经创建完成之后被调用。在这一步,实…

坚持刷题 |对称二叉树

文章目录 题目考察点代码实现实现总结扩展用迭代的方式判断是否为对称二叉树递归和迭代的对比可能的扩展提问 坚持刷题,老年痴呆追不上我,今天真的好累,就不难为自己了,刷个简单级别的吧:对称二叉树 题目 101.对称二叉…

大数据开发之SparkSQL

第 1 章:spark sql概述 1.1 什么是spark sql 1、spark sql是spark用于结构化数据处理的spark模块 1)半结构化数据(日志数据) 2)结构化数据(数据库数据) 1.2 为什么要有sparksql hive on s…

如何开发一款独立游戏?

如何开发一款独立游戏? 2023年,Steam平台共发行了14533款游戏,我们可以清晰地看到独立游戏市场的蓬勃发展和不断增长的活力。我们从SteamDB数据统计网站获悉,2023年Steam平台的游戏发行数量比2022年的12562款增加了1971款&#xf…

理想汽车大模型算法工程师面试,被问的瑟瑟发抖。。。。

最近我们技术群的一位小伙伴,分享了他面试理想汽车大模型算法工程师的经历与经验。 今天整理后分享给大家,如果你对这块感兴趣,可以文末加入我们的技术&面试讨论群 一面(1.5h,感觉有点难) 自我介绍&…

推荐收藏!48道数据分析师高频面试题汇总!

大家好,最近很多小伙伴私信我,讲一下数据分析的面试题,今天给大家整理了48道数据分析师面试时被频繁问到的题目,找数据分析岗位的同学一定要码住认真看。 想了解最新的面试动态、最新高频考点、技术交流的同学,可以文…

Windows和Linux访问不了GitHub的解决方法

一、Windows访问不了GitHub 问题描述 使用Windows访问GitHub时,出现如下情况,显示无法访问。 解决方案: 打开域名查询网站:https://tool.chinaz.com/dns 输入GitHub的域名,点击立即检测。 出现如下页面&#xff0c…

RK3399平台开发系列讲解(USB篇)BusHound 工具使用介绍

🚀返回专栏总目录 文章目录 一、BusHound简介二、BusHound的下载三、BusHound设备窗口四、BUSHound发送命令窗口沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 BusHound软件是由美国perisoft公司研制的一种专用于PC机各种总线数据包监视和控制的开发工具软件,其名…