MODNet 剪枝再思考: 优化计算量的实验历程分享

news2024/12/26 21:25:51

目录

1 写在前面

2 模型分析

3 遇到问题

4 探索实验一

4.1 第一部分

4.2 第二部分

Error 1

Error 2

4.3 实验结果

①参数量与计算量

②模型大小

③推理时延

5 探索实验二

5.1 LR Branch

5.2 HR Branch

5.2.1 初步分析

5.2.2 第一部分 enc2x

5.2.3 第二部分 enc4x

5.2.4 第三部分 hr4x

5.2.5 第四部分 hr2x

5.2.6 第五部分

5.3 f_branch

6 总结与思考


1 写在前面

在前面两篇文章《对MODNet 主干网络 MobileNetV2的剪枝探索》《对 MODNet 其他模块的剪枝探索》中,笔者已成功对 MobileNet V2 进行剪枝并嵌入至 MODNet,其余部分也采用键值对赋值的方式成功完成了替换,得到了 MODNet 剪枝版本一代,我们简称为“V1”。V1代在推理测试中发现:模型大小、参数量的确减小了一半,但推理时延从 240ms --> 192ms 尽管降低了20%,但下降力度还不够大,既然来到了模型压缩领域,那我们就应当尽可能“压榨”深度模型!

再一次观察 MODNet 剪枝前、后的变化情况,可以发现:FLOPs在剪枝后仅减小了原来的 1/5

考虑到相对参数量,计算复杂度 FLOPs 对推理速度的影响更大,因此,接下来对 MODNet 中 FLOPs 占比较高的层进行剪枝。

2 模型分析

从目前情况来看,下面两部分的 FLOPs 占比较高:

3 遇到问题

分析问题:网络需要的输入通道为16,但目前只获得了8个通道;

于是,通过调试,确定了权重矩阵的位置,进行修改:32 --> 16.

但这里一直存在着一个疑问:input 是如何来的?😅

按照往常的想法,上一层的输出作为下一层的输入,但这里由于正好是两个模块的交界点,因此无法满足这样的条件。所以,接下来需要找到 input 来源。(这也正是后续剪枝的基础)


通过 debug 可知,index57 的 input 源自 enc2x,如下:

接下来,寻找 enc2x 的来源。

MODNet 定义处,通过 LR Branch 得到:

来到 LR Branch 定义处,发现是源自 backbone 的forward:

debug 得 enc2x shape [1,16,256,256],正是 backbone 中 feature1 的输出:

那么,在对 backbone 剪枝过后,feature1 的 output 变为 [1,8,256,256],故 enc2x 的输入也就变为了该 tensor。

也就是说,对 backbone 的某些 channel 裁剪后,hr branch 中的 channel 也就必须调整!

辩证法的一大特性就是联系!

既然如此,如何调整?

方式包括直接修改权重 channel、裁剪 output channel。但由于这里 input 在 backbone 裁剪后已经确定,因此直接修改权重的 channel,也就有了先前将 enc_channels 中的16---->8。

目前关于 input 的源头已确定,也就明确了对 backbone 的剪枝会决定 hr branch 中的输入!

因此,对 hr branch 中网络层的剪枝也就分为 input 以及weight:

(1)针对 input 部分

方法:直接裁剪 backbone 中对应的部分

存在的问题:需要顾及其内部的倍数关系,以及 channel 为8的倍数(倒置残差块)

(2)针对 weight 部分

方法:直接修改enc_channels

存在的问题:考虑output与下一层输入的匹配情况

4 探索实验一

✨开展思路:修改结构----->匹配结构----->模型剪枝----->参数嵌入------>模型推理

4.1 第一部分

关系:lr_branch input channel <------ Linear <-------- backbone.feature.18 (1280)

方法:按照剪枝的稀疏情况直接修改网络,满足网络层与层之间相互匹配的同时,降低FLOPs。然后,利用 NNI 对子模块中的相关层进行剪枝。


首先,将 backbone last layer 1280 --> 640,但遇到了一个问题:

先前也遇到过,为了满足上下网络层的关系匹配,又恢复到了1280。

由于相关层 FLOPs 较高,因此直接修改关联层 channels 为640。


MODNet 模型剪枝前、后的情况为:

参数量:3.36 M --> 1.87 M;

计算量:15315.94 M --> 14502.68 M

我们发现:params 大幅下降,但 FLOPs 变化不大!

4.2 第二部分

由于对 input 不能直接裁剪,因此对 weight output channel 进行裁剪。

在观察 hr branch 时,联想到了先前 MobileNet V2 部分的 interverted_residual:

在原先结构中是递增状态,因此这里遵循先前的规则,调换位置。

Error 1

由于先前已经明确了hr branch每一层的input,因此定位到相应部修改即可。

wrapper:24 --> 16

结果是计算量仅仅只是有了轻微的减少趋势:

参数量 :1.88 M;

计算量:14480.74 M


观察 hr branch 的 weight output channel,与预定义的 channels 有关:

方法:直接修改channels:32 --> 24


Error 2

修改:

计算量相比先前的轻微减少有了明显的改进,目前达到了 8976.64 M,减小了一半:

至此,我们将该模型作为 MODNet 剪枝版本二代,简称V2

4.3 实验结果

整体改动情况:

  • backbone中的last channel、wrapper、interverted_residual;
  • MODNet hr_channels;
  • HR Branch中的conv_hr4x;
①参数量与计算量

情况一:原模型

情况二:对 backbone 剪枝后的模型;

情况三:修改 backbone 最后一层 channel 以及 hr branch 中的 weight channel后的模型;

情况一情况二情况三
参数量6.45 M3.36 M1.76 M
计算量18117.07 M15315.94 M8976.64 M
②模型大小
模型模型大小
原模型25641 K
V113256 K
V27213 K
③推理时延
序号原模型V1V2
10.850.670.54
20.880.670.56
30.840.650.54

5 探索实验二

由于 backbone 通道的剪枝会决定 HR branch,因此调整思路,先将 backbone 中的倒置残差块恢复到原先的情况。

5.1 LR Branch

backbone 部分修剪 last channel 1280 --> 640。

se_block、conv_lr16x,其余排除。

config 加入 Linear,将 se_block 以及 lrx 作为整体,与 backbone 剪枝。

变化如下:

读取 pth,并修改结构,验证是否可以成功加载:

加载失败,原因是涉及到了 Conv 中的 BN 层,如下:

解决方案:修改 IBNorm 定义即可。

于是,成功加载,且完成 lr_branch 的模拟推理,如下:

接下来,将 lr_branch 的参数嵌入到 MODNet,但在打印键时发现缺少了 running mean,尽管与inference 无关,但与 retrain 有关。换句话说,虽然可以成功嵌入,但对后续重训练精度的恢复有影响!

再次打印 lr_branch 参数,发现该键是存在的,但由于 model.named_parameters() 并没有获取到,因此这里采用 model.state_dict() 的方式重新嵌入。打印方式如下:

for name, params in model.state_dict().items():   
    print(name)

总共有751个键值对,注意 backbone 和 lr 中的 backbone,参数一致:

5.2 HR Branch

5.2.1 初步分析

将 HR Branch 划分为 5 个部分:

分析:3、4、5 部分 channel 有着明显的上、下层衔接关系;

而1、2部分从channel上看不出联系;

因此,接下来将对该 model 的5个部分分别处理,进而合并成 new branch。

5.2.2 第一部分 enc2x

利用 sequential 连接,剪枝:

无法绝对匹配,剪枝失败,源代码定义如下:

所以无法合并,考虑分层剪枝,但又存在两个问题

  • 无法对权重的input channel修改(16、35)
  • 下一层的input channel(35)无法匹配

解决方案:手动剪枝

明确目标:

✨开展思路:

  1. 获取第57层,先使用 0.25 稀疏度剪枝,然后执行剪枝脚本将 input channel16 --> 8,参数保存,注意参数名 MODNet 内一致

  2. 获取58层同上,操作同上;

  3. 利用 sequential 连接 tohr 与 conv;

  4. 按照结构内的参数名,将 tohr 与 conv 参数连接,形成一个 ordereddict 格式;

  5. 将参数嵌入结构,形成第一个part;

剪枝后的参数名虽然和结构中相差了 hr,且一一对应,但填入结构仍然出现了参数初始化的情况。如下:

strict=false:

因此,这里采用键值替换进行修改。(结构不变,修改参数中的键名)

但这样的键名不利于下面的合并。

于是,笔者重新构建字典,修改键名,代码如下:

tohr_enc2x_ckpt = OrderedDict(
    [(k.replace(k, 'hr_branch.tohr_enc2x.' + k), v) for k, v in tohr_enc2x.state_dict().items()])

后来想想,这一参数(填入结构并修改参数名)和剪枝过后的是一致的,验证代码与结果如下:

for key in pruned_tohr_enc2x.keys():
    if tohr_enc2x_ckpt[key].equal(pruned_tohr_enc2x[key]):
        print("Match")

因此,这一操作意义不大。因为初心是为了与参数嵌入时命名一致,但实际上因为这一操作导致的中间过程较为繁琐。此外,剪枝过后的 pruned_tohr_enc2x 已经达到了目标状态,即shape:[24,8,1,1]

所以,第一部分两个 layer 没有连接的必要!

5.2.3 第二部分 enc4x

调整思路:NNI 剪枝 + 自定义通道剪枝 + 键名替换 + 参数嵌入

剪枝前:

剪枝后:

因此,这一部分成功嵌入!

5.2.4 第三部分 hr4x

首先,channel 83 并不合理,与模型定义时产生了冲突,因此先前仅仅是为了满足模型结构做的微调。通过剪枝,除了layer 1 的weight channel,其他都可以实现。


如何将 weight 从(24,16,1,1)的尺寸裁剪为(24,8,1,1)?🥲🥲🥲

✨开展思路:

  1. 获取该层的参数,打印shape测试;

  2. 计算每一个输入通道的权重和,并排序;

  3. 将较小的8个通道去除;

  4. 创建去除后的tensor,进行参数替换;

于是,LeNet 它又来了!笔者很喜欢在 LeNet 上做一些测试。🌝

核心思想:编号 --> 排序 --> 去除通道 --> 重新编号 --> 参数替换

注意事项:①bias由 output channel 决定;②网络层类型为 OrderedDict()

测试:将输入 weight 由[6,3,3,3] -----> [4,3,3,3]

局限性:缺少稀疏度分析 + 单一层剪枝


针对 hr_branch 的第一个 layer channel(16---->8)成功剪枝!

针对第三部分 channel 99 ------->83,成功剪枝:

然后修改键名,与 MODNet 匹配,嵌入成功。

5.2.5 第四部分 hr2x

剪枝前:

剪枝后:

因此,这一部分成功嵌入!

5.2.6 第五部分

剪枝前:

剪枝后:

同样,这一部分成功嵌入!

5.3 f_branch

剪枝前:

剪枝后:

同时,也完成了模型嵌入,但遇到了下列问题:

💥问题一:保存的 hr branch 参数 bias 都为0、1,影响到了再训练的精度;


💥问题二:剪枝脚本仅仅针对 Conv 的 weight 以及 bias,尚未对包含于 Conv 块中的 BN 层进行处理,有待改进。

修改:针对input channel,BN层不被影响,因此直接添加如 dict 即可。


💥问题三:剪枝脚本执行后返回的网络层的名字没有和原先的匹配,这里有待处理。

修改:按照MODNet中的layer name修改,利用键值进行替换

OrderedDict([(k.replace(k, 'hr_branch.tohr_enc2x.' + k), v) for k, v in model.state_dict().items()])

6 总结与思考

通过再一次分析 MODNet 网络结构,笔者发现 V1 代的剪枝版本在计算量上处理得不够好,于是,本文从计算量的角度分析,对 MODNet 网络结构中计算量占比较大的部分重新进行剪枝处理,并进行参数替换。实验结果表明,剪枝后的模型相比原模型降低了一半的计算量,推理时延也有了明显的改进,然而,模型精度并不好!

因此,关于模型剪枝后retrain精度较低的问题,笔者做了下列思考🤔🤔🤔:

(1)从剪枝本身考虑

  1. 相同情况下,大 sparse 导致更多的特征提取层无法提取到必要的特征,破坏了核心结构;

  2. 固定整体剪枝比例存在漏洞,导致有些模块去除了重要程度较高的通道;

  3. 缺少 BN 层中的 running mean 、var ,影响了再训练时的精度恢复;

解决方案:

①采用 少量剪枝---->微调---->少量剪枝------微调 的策略;

②不再采用固定整体比例剪枝,而是对特定的模块具体问题具体分析

(2)从再训练考虑

  1. 由于参数的初始化以及算法的随机性,导致单一的训练无法得到较理想的效果?
  2. 如何准确设置超参?训练得到原模型的超参组合与剪枝后重训练的超参一样吗?
  3. 关于 learning rate,剪枝后,模型减小,参数减少,寻找最优解时的步长应当减小。反之,可能错过最优解。
  4. 是否可以设置动态参数?随着 epoch 的增加而变化?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1407437.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【前端web入门第一天】01 开发环境、HTML基本语法文本标签

文章目录: 1. 准备开发环境 1.1 vs Code基本使用 2.HTML文本标签 2.1 标签语法2.2 HTML基本骨架2.3 标签的关系2.4 注释2.5 标题标签2.6 段落标签2.7 换行与水平线标签2.8 文本格式化标签 1. 准备开发环境 VSCode与谷歌浏览器离线版,安装包评论区自提. VSCode默认安装位置:C…

硬件之相机选型

1. 相机成像原理 相机成像原理如图所示&#xff1a; 注&#xff1a; 当物距为无穷远时&#xff0c;像距等于焦距&#xff0c;成像在焦平面上&#xff1b;当物距为无穷无与两倍焦距之间时&#xff0c;像距在焦距与两倍焦距之间&#xff0c;成缩小的实像&#xff1b;当物距等于两…

前端项目打包使用nginx本地服务器运行

1.下载安装nginx nginx: 下载nginx 中文网提供nginx中文文档nginx下载等内容https://nginx.p2hp.com/en/download.html 稳定版就可以&#xff0c;下载完后将下载的压缩包解压 2.修改配置文件 主要修改端口&#xff0c;以及项目所在文件夹&#xff0c;直接放html下就行 server …

基于Java SSM框架实现在线教育资源管理系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架在线教育资源管理系统演示 摘要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线教育资源管理系统&#xff0c;主要的模块包括管理员&#xff1b;个人中心、学生管理、教师管…

【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍

Java技术体系方向-JVM虚拟机参数调优原理 内容简介栈上分配与逃逸分析逃逸分析(Escape Analysis)栈上分配基本思想使用场景线程私有对象 虚拟机内存逻辑图JVM内存分配源码&#xff1a;代码总体逻辑 在某些场景使用栈上分配设置JVM运行参数&#xff1a;开启逃逸模式&#xff0c;…

CMS如何调优

业务JVM频繁Full GC如何排查 原则是先止损&#xff0c;再排查。 FGC的原因是对象晋升失败或者并发模式失败&#xff0c;原因都是老年代放不下晋升的对象了。 1.可能是大对象导致的内存泄漏。快速排查方法&#xff1a;观察数据库网络IO是否和FGC时间点吻合&#xff0c;找到对应…

自由落体(C语言刷题)

专栏(刷题)&#xff1a;https://blog.csdn.net/2301_79293429/category_12545690.html 这一题直接给我梦回高中&#x1f636;‍&#x1f32b;️ //题目理解&#xff1a;小车开始运动的时候小球都开始下落&#xff0c; // 需要知道下落到 小车顶部的时间 和 落地的时间&#xf…

ZXing开源库生成二维码

引言 二维码&#xff08;QR Code&#xff09;作为一种快速、高容量、高密度的矩阵条码&#xff0c;已经在各行各业得到广泛应用。ZXing&#xff08;Zebra Crossing&#xff09;是一款由Google开源的Java二维码生成和解析库&#xff0c;提供了丰富的功能和易于使用的API。本篇博…

关于一个QT程序的简单破解思路(不需要分析信号和槽的方法,通用所有程序的破解思路)

几年前,公司买了台国产贴片机,里面的主程序是QT编写,运行在WINDOW XP系统上。主程序打开的界面,如图: 我来简单介绍下程序界面,各位读者不需要搞明白功能,只要知道大体的流程即可。 分析主界面: 一、左边的列表&#xff1a; 贴片生产文件,里面包括了贴片时元器件的坐标、飞达…

GPT5?OpenAI 创始人:GPT5 已在训练中,需要更多数据

OpenAI 最近发出征集大规模数据集的呼吁&#xff0c;特别是“今天在互联网上尚未公开轻松获取”的数据集&#xff0c;尤其是长篇写作或任何格式的对话。 GPT-5丨AI浪潮席卷全球&#xff0c;OpenAI 推出GPT-4 后&#xff0c;又于上月26日宣布今年9月、10月将推出GPT-4.5&#xf…

【openlayers】移动视角适应所有点

移动视角适应所有点 连接 chatgpt 代码 // 创建一个地图 var map new ol.Map({target: map, // 指定地图容器的IDlayers: [// 添加你的地图图层// 例如&#xff1a;new ol.layer.Tile({ source: new ol.source.OSM() })],view: new ol.View({center: [0, 0], // 地图初始中…

Java中的HTTPS通信

在Java中实现HTTPS通信&#xff0c;主要涉及到SSL/TLS协议的使用&#xff0c;用于提供数据传输的安全性。下面我们将深入探讨如何使用Java进行HTTPS通信。 一、基本概念 HTTPS&#xff0c;全称为Hypertext Transfer Protocol Secure&#xff0c;是HTTP的安全版本。它使用SSL/…

【JavaEE进阶】 MyBatis使用注解实现增删改查

文章目录 &#x1f343;前言&#x1f334;传递参数&#x1f38b;增(Insert)&#x1f6a9;返回主键 &#x1f384;删(Delete)&#x1f332;改(Update)&#x1f333;查(Select)&#x1f6a9;起别名&#x1f6a9;结果映射&#x1f6a9;开启驼峰命名(推荐使用) ⭕总结 &#x1f343…

代课老师是劳务派遣吗

劳务派遣是一种特殊的用工形式&#xff0c;指由劳务派遣机构与派遣劳工签订劳动合同&#xff0c;并支付报酬&#xff0c;把劳动者派向其他用工单位&#xff0c;再由其用工单位向派遣机构支付一笔服务费用的一种用工形式。也就是说&#xff0c;劳务派遣的员工和实际工作的单位没…

谁能做智驾?国内电动车新王者诞生在望

书接上回&#xff0c;我来告诉你们&#xff0c;近来国内科技巨头华为和比亚迪之间&#xff0c;在电动车智能化领域也快开打起来了&#xff01;你们心里一定有一个问题—这两家公司到底是为什么要较量呢?难道仅仅是想比比看谁技术更强?还是产品谁能卖的更好?其实&#xff0c;…

【Linux】文件周边001之系统文件IO

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.C语言文件IO 1.1…

HCIP网络类型+串线+GRE

一.网络类型&#xff1a; 点到点 BMA&#xff1a;广播型多路访问 -- 在一个MA网络中同时存在广播&#xff08;泛洪&#xff09;机制 NBMA&#xff1a;非广播型多路访问 -- 在一个MA网络中&#xff0c;没有泛洪机制-----不怎么使用了 MA&#xff1a;多路访问 -- 在一个…

手机App防沉迷系统 - 华为OD统一考试

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 智能手机方便了我们生活的同时&#xff0c;也侵占了我们不少的时间。“手机Ap防沉迷系统” 能够让我们每天合理的规划手机App使用时间&#xff0c;在正确的时间做…

Redis - redis.windows.conf配置文件及RDB和AOF数据持久化方案

Redis - redis.windows.conf配置文件及RDB和AOF数据持久化方案 Redis的高性能是由于其将所有数据都存储在了内存中&#xff0c;为了使Redis在重启之后仍能保证数据不丢失&#xff0c;需要将数据从内存中同步到硬盘中&#xff0c;这一过程就是持久化。 Redis支持两种方式的持久化…

Vue3 Suspense 优雅地处理异步组件加载

✨ 专栏介绍 在当今Web开发领域中&#xff0c;构建交互性强、可复用且易于维护的用户界面是至关重要的。而Vue.js作为一款现代化且流行的JavaScript框架&#xff0c;正是为了满足这些需求而诞生。它采用了MVVM架构模式&#xff0c;并通过数据驱动和组件化的方式&#xff0c;使…