【数学建模】插值与拟合

news2024/11/18 0:14:32

文章目录

  • 插值
    • 插值方法
    • 用Python解决插值问题
  • 拟合
    • 最小二乘拟合
    • 数据拟合的Python实现

适用情况
处理由试验、测量得到的大量数据或一些过于复杂而不便于计算的函数表达式时,构造一个简单函数作为要考察数据或复杂函数的近似
定义
给定一组数据,需要确定满足特定要求的曲线(或曲面)
插值:如果所求曲线通过所给定有限个数据点
拟合:要求所求曲线反映对象整体的变化态势,得到简单实用的近似函数

插值

在一系列数据点对中,一些数据点的函数值缺失,因而希望通过已有数据点得到函数的近似表达式从而近似出确实数据点的函数值

从性质优良、便于计算的函数类{P(x)}中选择一个使得 P ( x i ) = y i P(x_i) =y_i P(xi)=yi成立的P(x)作为f(x)的近似
x 0 , x 1 , . . . , x n x_0, x_1, ..., x_n x0,x1,...,xn成为插值节点
{ P ( x ) } \{P(x)\} {P(x)}称为插值函数类
P ( x i ) = y i ( i = 0 , 1 , . . . , n ) P(x_i) =y_i(i=0, 1, ..., n) P(xi)=yi(i=0,1,...,n)称为插值条件
得到的 P ( x ) P(x) P(x)称为插值函数
f ( x ) f(x) f(x)称为被插值函数

一维插值方法:一维Lagrange插值、分段线性插值、分段二次插值、牛顿插值和样条插值
二维插值方法:二维样条插值

插值方法

Lagrange插值
P ( x ) = ∑ i = 0 n l i ( x ) y i P(x)=\sum^n_{i=0}l_i(x)y_i P(x)=i=0nli(x)yi
其中 l i ( x ) l_i(x) li(x)称为以 x 0 , x 1 , . . . , x n x_0, x_1, ..., x_n x0,x1,...,xn为节点的Lagrange插值基函数
l i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j l_i(x) = \prod^n_{j=0, j\neq i} \frac{x-x_j}{x_i-x_j} li(x)=j=0,j=inxixjxxj

代码实现

def h(x,y,a):
	s = 0.0
	for i in range(len(y)):
		t = y[i]
		for j in range(len(y)):
			if i != j:
				t *= (a-x[j])(x[i]-x[j])
		s += t
	return s

分段线性插值
用折线代替曲线 y = f ( x ) y = f(x) y=f(x),其中 P ( x ) P(x) P(x)
P ( x ) = x − x i x i + 1 − x i y i + 1 + x − x i + 1 x i − x i + 1 y i P(x) = \frac{x-x_i}{x_{i+1}-x_i}y_{i+1} + \frac{x-x_{i+1}}{x_i-x_{i+1}}y_i P(x)=xi+1xixxiyi+1+xixi+1xxi+1yi
其中 x ∈ [ x i , x i + 1 ] , i = 0 , 1 , . . . , n − 1 x \in [x_i, x_{i+1}], i=0,1,..., n-1 x[xi,xi+1],i=0,1,...,n1

分段二次插值
P ( x ) P(x) P(x)为一二次多项式,即适用分段抛物线代替 y = f ( x ) y=f(x) y=f(x)

牛顿插值
差分定义:函数 f ( x ) f(x) f(x),等距节点 x i = x 0 + i h ( i = 0 , 1 , . . . , n ) x_i=x_0+ih(i=0, 1, ..., n) xi=x0+ih(i=0,1,...,n),一阶前向差分 Δ f i = f i + 1 − f i \Delta f_i = f_{i+1}-f_i Δfi=fi+1fi, 高阶差分为差分的差分

  1. Δ 0 f ( x ) = f ( x ) \Delta^0 f(x) = f(x) Δ0f(x)=f(x)
  2. Δ m f ( x ) = Δ m − 1 f ( x + h ) − Δ m − 1 f ( x ) \Delta^m f(x) = \Delta^{m-1}f(x+h) - \Delta^{m-1}f(x) Δmf(x)=Δm1f(x+h)Δm1f(x)

递归函数计算差分

def diff_forward(f, k, h, x):
	if k<=0: 
		return f(x)
	else: 
		return diff_forward(f, k-1, h, x+h) - diff_forward(f, k-1, h, x)

差商定义:函数 f ( x ) f(x) f(x),相异节点 x 0 < x 1 < . . . < x n x_0 < x_1<... < x_n x0<x1<...<xn
函数 f ( x ) f(x) f(x)关于节点 x i x_i xi x j x_j xj的一阶差商 f [ x i , x j ] f[x_i, x_j] f[xi,xj]
f [ x i , x j ] = f ( x i ) − f ( x j ) x i − x j f[x_i, x_j] = \frac{f(x_i)-f(x_j)}{x_i-x_j} f[xi,xj]=xixjf(xi)f(xj)
f ( x ) f(x) f(x)关于点 x i x_i xi x j x_j xj x k x_k xk的二阶差商有
f [ x i , x j , x k ] = f [ x i , x j ] − f [ x j , x k ] x i − x k f[x_i, x_j, x_k]= \frac{f[x_i, x_j]-f[x_j, x_k]}{x_i-x_k} f[xi,xj,xk]=xixkf[xi,xj]f[xj,xk]
f ( x ) f(x) f(x)关于 x 0 , x 1 , . . . , x k x_0, x_1, ..., x_k x0,x1,...,xk k k k阶差商为
f [ x 0 , x 1 , . . . , x k ] = f [ x 0 , x 1 , . . . , x k − 1 ] − f [ x 1 , x 2 , . . . , x k ] x 0 − x k f[x_0, x_1, ..., x_k] = \frac{f[x_0, x_1, ..., x_{k-1}]-f[x_1, x_2, ..., x_k]}{x_0-x_k} f[x0,x1,...,xk]=x0xkf[x0,x1,...,xk1]f[x1,x2,...,xk]

代码示例:计算 k + 1 k+1 k+1个点对数据的 k k k阶差商

def diff_quo(xi=[], fi=[]):
    if len(xi)>2 and len(fi)>2:
        return (diff_quo(xi[:len(xi)-1],fi[:len(fi)-1])-diff_quo(xi[1:len(xi)],fi[1:len(fi)])) / float(xi[0]-xi[-1])  
    return (fi[0]- fi[1])/float(xi[0]-xi[1])

Newton插值公式
一次Newton插值多项式: N 1 ( x ) = f ( x 0 ) + ( x − x 0 ) f [ x 0 , x 1 ] N_1(x)=f(x_0)+(x-x_0)f[x_0, x_1] N1(x)=f(x0)+(xx0)f[x0,x1]
再根据各阶差商的定义,可以得到 N n ( x ) N_n(x) Nn(x) f ( x ) f(x) f(x) n n n次插值多项式

样条插值
适用于对插值函数的光滑性有较高要求的问题
样条函数:具有一定光滑性的分段多项式
给定 [ a , b ] [a,b] [a,b]的一个分划, Δ : a = x 0 < x 1 < . . . < x n = b \Delta: a=x_0 < x_1 < ... < x_n=b Δ:a=x0<x1<...<xn=b
S ( x ) S(x) S(x)在各个小区间 [ x i , x i + 1 ] ( i = 0 , 1 , . . . , n − 1 ) [x_i, x_{i+1}](i=0, 1, ..., n-1) [xi,xi+1](i=0,1,...,n1)上为 m m m次多项式,且有 m − 1 m-1 m1阶连续导数,称 S ( x ) S(x) S(x)为关于分划 Δ \Delta Δ m m m次样条函数,折线属于一次样条曲线

二维数据的双三次样条插值
考虑二维数据的插值时,需要考虑到插值区域是否规则,给定数据是有规律分布的还是散乱、随机分布的
当二维数据在规则区域上有规律分布时,可以考虑用双三次样条插值,即求解一个 S ( x ) S(x) S(x)满足对 x x x y y y都是三次的多项式
image.png

用Python解决插值问题

scipy.interpolatemodule有一维插值函数interp1d、二维插值函数interp2d和多维插值函数interpn

一维插值
interp1d(x, y, kind='linear')
说明:kind参数取值为字符串,指明插值方法,取值包括linear线性插值、zero0阶样条插值、slinear1阶样条插值、quadratic2阶样条插值、cubic3阶样条插值
image.png
代码

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d 
x=np.arange(0,25,2)
y=np.array([12, 9, 9, 10, 18, 24, 28, 27, 25, 20, 18, 15, 13])
xnew=np.linspace(0, 24, 500)  #插值点
f1=interp1d(x, y); 
y1=f1(xnew);
f2=interp1d(x, y,'cubic'); 
y2=f2(xnew)
plt.rc('font',size=16); 
plt.rc('font',family='SimHei')
plt.subplot(121)
plt.plot(xnew, y1)
plt.xlabel("(A)分段线性插值")
plt.subplot(122)
plt.plot(xnew, y2)
plt.xlabel("(B)三次样条插值")
plt.savefig("figure7_4.png", dpi=500)
plt.show()

image.png

二维网格节点插值
image.png
image.png

思路:原始数据为100x100网格节点的数据,为提高精度,适用双三次样条插值,得到该区域上10x10网格节点的数据。把 0 ≤ x ≤ 1400 ∧ 0 ≤ y ≤ 1200 0 \leq x \leq 1400 \land 0 \leq y \leq 1200 0x14000y1200 数据分为140x120个小矩形计算对应曲面面积,每个矩形分为两个三角形,再利用海伦公式求解
代码:

from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import norm
from scipy.interpolate import interp2d
z=np.loadtxt("Pdata7_5.txt")  #加载高程数据
x=np.arange(0,1500,100)
y=np.arange(1200,-100,-100)
f=interp2d(x, y, z, 'cubic')
xn=np.linspace(0,1400,141)
yn=np.linspace(0,1200,121)
zn=f(xn, yn)
m=len(xn); n=len(yn); s=0; 
for i in np.arange(m-1):
    for j in np.arange(n-1):
        p1=np.array([xn[i],yn[j],zn[j,i]])
        p2=np.array([xn[i+1],yn[j],zn[j,i+1]])
        p3=np.array([xn[i+1],yn[j+1],zn[j+1,i+1]])
        p4=np.array([xn[i],yn[j+1],zn[j+1,i]])
        p12=norm(p1-p2); p23=norm(p3-p2); p13=norm(p3-p1);p14=norm(p4-p1); p34=norm(p4-p3);
        L1=(p12+p23+p13)/2;s1=np.sqrt(L1*(L1-p12)*(L1-p23)*(L1-p13));
        L2=(p13+p14+p34)/2; s2=np.sqrt(L2*(L2-p13)*(L2-p14)*(L2-p34));
        s=s+s1+s2;  
print("区域的面积为:", s)
plt.rc('font',size=16); plt.rc('text',usetex=True)
plt.subplot(121); contr=plt.contour(xn,yn,zn); plt.clabel(contr)
plt.xlabel('$x$'); plt.ylabel('$y$',rotation=90)
ax=plt.subplot(122,projection='3d'); 
X,Y=np.meshgrid(xn,yn)
ax.plot_surface(X, Y, zn,cmap='viridis')
ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$')
plt.savefig('figure7_5.png',dpi=500); plt.show()

二维乱点插值
image.png
代码:

from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import griddata
x=np.array([129,140,103.5,88,185.5,195,105,157.5,107.5,77,81,162,162,117.5])
y=np.array([7.5,141.5,23,147,22.5,137.5,85.5,-6.5,-81,3,56.5,-66.5,84,-33.5])
z=-np.array([4,8,6,8,6,8,8,9,9,8,8,9,4,9])
xy=np.vstack([x,y]).T
xn=np.linspace(x.min(), x.max(), 100)
yn=np.linspace(y.min(), y.max(), 100)
xng, yng = np.meshgrid(xn,yn)  #构造网格节点
zn=griddata(xy, z, (xng, yng), method='nearest')  #最近邻点插值
plt.rc('font',size=16); plt.rc('text',usetex=True)
ax=plt.subplot(121,projection='3d'); 
ax.plot_surface(xng, yng, zn,cmap='viridis')
ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$')
plt.subplot(122); c=plt.contour(xn,yn,zn,8); plt.clabel(c)
plt.savefig('figure7_6.png',dpi=500); plt.show()

拟合

最小二乘拟合

解决什么问题?
已知一组二维数据,即平面上 n n n个点 ( x i , y i ) ( i = 1 , 2 , . . . , n ) (x_i, y_i)(i=1, 2, ..., n) (xi,yi)(i=1,2,...,n) x i x_i xi互不相同,求函数 f ( x ) f(x) f(x)使得 f ( x ) f(x) f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好
残差: δ i = f ( x i ) − y i , i = 1 , 2 , . . . , n \delta_i=f(x_i)-y_i, i=1,2,...,n δi=f(xi)yi,i=1,2,...,n
最小二乘法使用的判定准则为残差的平和和最小,即
a r g m i n J = ∑ i = 1 n ( f ( x i ) − y i ) 2 argmin \quad J=\sum^n_{i=1}(f(x_i)-y_i)^2 argminJ=i=1n(f(xi)yi)2
最终得到拟合函数 f ( x ) = f ( x , a 1 , a 2 , . . . , a n ) f(x) = f(x, a_1, a_2, ..., a_n) f(x)=f(x,a1,a2,...,an)
根据参数 a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an线性与否,最小二乘法分为线性最小二乘和非线性最小二乘

线性最小二乘法
给定线性无关的函数系 { ϕ k ( x ) ∣ k = 1 , 2 , . . . , m } \{\phi_k(x)|k=1,2,...,m\} {ϕk(x)k=1,2,...,m}
若有拟合函数 f ( x ) = ∑ k = 1 m a k ϕ k ( x ) f(x) = \sum^m_{k=1}a_k \phi_k(x) f(x)=k=1makϕk(x),例如 f ( x ) = a m x m − 1 + a m − 1 x m − 2 + . . . + a 2 x + a 1 f(x)=a_mx^{m-1}+a_{m-1}x^{m-2}+...+a_2x+a_1 f(x)=amxm1+am1xm2+...+a2x+a1 f ( x ) = ∑ k = 1 m a k c o s ( k x ) f(x) = \sum^m_{k=1}a_k cos(kx) f(x)=k=1makcos(kx)
f ( x ) = f ( x , a 1 , a 2 , . . . , a m ) f(x)=f(x,a_1, a_2, ..., a_m) f(x)=f(x,a1,a2,...,am)为关于参数 a 1 , a 2 , . . . , a m a_1,a_2,..., a_m a1,a2,...,am的线性函数
f ( x ) f(x) f(x)带入 J J J的计算,根据
∂ J ∂ a k = 0 , k = 1 , 2 , ⋯   , m \frac{\partial J}{\partial a_k}=0,\quad k=1,2,\cdots,m akJ=0,k=1,2,,m
即:
∑ i = 1 n [ ( f ( x i ) − y i ) φ k ( x i ) ] = 0 , k = 1 , 2 , ⋯   , m \sum_{i=1}^{n}\left[\left(f\left(x_{i}\right)-y_{i}\right) \varphi_{k}\left(x_{i}\right)\right]=0, \quad k=1,2, \cdots, m i=1n[(f(xi)yi)φk(xi)]=0,k=1,2,,m
得到:
image.png
形成一个关于 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am的线性方程组,记号说明如下:
image.png
则正规方程组改写为
R T R A = R T Y R^TRA=R^TY RTRA=RTY
当矩阵 R R R列满秩时, R T R R^TR RTR可逆,此时正规方程组有唯一解,即
A = ( R T R ) − 1 R T Y A=(R^TR)^{-1}R^TY A=(RTR)1RTY
非线性最小二乘拟合
当拟合函数不能以 ϕ k ( x ) \phi_k(x) ϕk(x)线性组合的形式构成时,例如下列形式:
image.png
使用同样的“最小化偏差”方法求解参数

拟合函数的选择
先做出数据的散点图,从直观上判断应选用什么样的拟合函数
举个例子
若数据分布接近直线,使用线性函数 f ( x ) = a 1 x + a 2 f(x)=a_1x+a_2 f(x)=a1x+a2
若数据分布接近抛物线,使用二次多项式 f ( x ) = a 1 x 2 + a 2 x + a 3 f(x)=a_1x^2+a_2x+a_3 f(x)=a1x2+a2x+a3
若数据分布是开始上升块随后逐渐变缓,使用双曲线型函数或指数型函数,即
image.png
若数据分布是开始下降较快随后逐渐变缓,使用
image.png

数据拟合的Python实现

利用NumPy库中的多项式拟合函数polyfitscipy.optimize模块中的curve_fit函数

image.png

polyfit的用法
代码展示:

from numpy import polyfit, polyval, array, arange
from matplotlib.pyplot import plot,show,rc
x0=arange(0, 1.1, 0.1)
y0=array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
p=polyfit(x0, y0, 2) #拟合二次多项式
print("拟合二次多项式的从高次幂到低次幂系数分别为:",p)
yhat=polyval(p,[0.25, 0.35]); print("预测值分别为:", yhat)
rc('font',size=16)
plot(x0, y0, '*', x0, polyval(p, x0), '-'); show()

curve_fit的用法
调用格式
popt, pcov = curve_fit(func, xdata, ydata)
参数说明:func为拟合的函数,xdata是自变量的观测值,ydata是函数的观测值,返回值popt是拟合的参数,pcov是参数的协方差矩阵
代码展示:

import numpy as np
from scipy.optimize import curve_fit
y=lambda x, a, b, c: a*x**2+b*x+c
x0=np.arange(0, 1.1, 0.1)
y0=np.array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
popt, pcov=curve_fit(y, x0, y0)
print("拟合的参数值为:", popt)
print("预测值分别为:", y(np.array([0.25, 0.35]), *popt))

实例练习
image.png
代码:

import numpy as np
from scipy.optimize import curve_fit
x0=np.array([6, 2, 6, 7, 4, 2, 5, 9])
y0=np.array([4, 9, 5, 3, 8, 5, 8, 2])
z0=np.array([5, 2, 1, 9, 7, 4, 3, 3])
xy0=np.vstack((x0, y0))
def Pfun(t, a, b, c):
    return a*np.exp(b*t[0])+c*t[1]**2
popt, pcov=curve_fit(Pfun, xy0, z0)
print("a,b,c的拟合值为:", popt)

image.png
代码:

from mpl_toolkits import mplot3d
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
m=200; n=300
x=np.linspace(-6, 6, m); y=np.linspace(-8, 8, n);
x2, y2 = np.meshgrid(x, y)
x3=np.reshape(x2,(1,-1)); y3=np.reshape(y2, (1,-1))
xy=np.vstack((x3,y3))
def Pfun(t, m1, m2, s):
    return np.exp(-((t[0]-m1)**2+(t[1]-m2)**2)/(2*s**2))
z=Pfun(xy, 1, 2, 3); zr=z+0.2*np.random.normal(size=z.shape) #噪声数据
popt, pcov=curve_fit(Pfun, xy, zr)   #拟合参数
print("三个参数的拟合值分别为:",popt)
zn=Pfun(xy, *popt)  #计算拟合函数的值
zn2=np.reshape(zn, x2.shape)
plt.rc('font',size=16)
ax=plt.axes(projection='3d') #创建一个三维坐标轴对象
ax.plot_surface(x2, y2, zn2,cmap='gist_rainbow')
plt.savefig("figure7_10.png", dpi=500); plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1407306.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ArcEngine添加点要素、线要素、面要素及学习总结

基于C#的ArcEngine二次开发教程&#xff08;13&#xff09;&#xff1a;点、线、面要素的绘制_arcengine onmousedown-CSDN博客 https://www.cnblogs.com/cannel/p/11074343.html ArcEngine绘制点、线、多边形、矩形、圆形、椭圆的代码_arcengine 开发 生成矩形-CSDN博客 https…

keil5 查看stm32 寄存器的值

1 查看芯片内部寄存器的值&#xff0c;首先是在仿真状态下&#xff0c;首先仿真&#xff0c;程序运行。 2 点击菜单栏的 View -> System viewer &#xff0c;右侧便会出现芯片的所有寄存器(如果没有&#xff0c;需要添加)&#xff0c;点击要查看的寄存器&#xff0c;便会出…

【手撕C语言 第八集】函数栈帧的创建与销毁

文章目录 一、什么是函数栈帧&#xff1f;二、函数栈帧能解决什么问题呢&#xff1f;&#xff08;1&#xff09;局部变量是如何创建的&#xff1f;&#xff08;2&#xff09;为什么局部变量不初始化内容是随机的&#xff1f;&#xff08;3&#xff09;函数调用时参数是如何传递…

使用ffmpeg转换索尼老DV拍摄的VOB文件为mp4

一些背景故事 最近对象想用 CCD 拍照录像&#xff0c;家里刚好有一台快 20 年前的索尼 DV DCR-DVD653E&#xff0c;就是电池老化充不进去电了。 翻出来之后还感慨了一下&#xff1a;当年没有网购&#xff0c;价格不透明&#xff1b;有些地方也没有官方店&#xff0c;只有一两家…

Yuliverse:引领区块链游戏新篇章!

数据源&#xff1a;Yuliverse Dashboard 作者&#xff1a;lesleyfootprint.network 什么是 Yuliverse Yuliverse 是一款元宇宙游戏的先锋&#xff0c;是一款主打 Explore to earn 和 Social to earn 的链游。 这是一款能让你边玩边赚钱的免费区块链游戏&#xff0c;得到 LI…

解决docker desktop 登录不上账号的问题

一、背景 点击“Sign in”&#xff0c;一直卡在Verifying credentials...&#xff0c;重试也没用。 二、解决办法 1、macOS下载并安装Proxifier 2、配置Proxifier 配置Proxies 配置rule 其中的Applications填&#xff1a;"Docker.app"; "Docker"; com.…

机器学习之聚类-2D数据类别划分

无监督学习&#xff08;Unsupervised Learning&#xff09; 机器学习的一种方法&#xff0c;没有给定事先标记过的训练示例&#xff0c;自动对输入的数据进行分类或分群。 方式一&#xff1a;站着或坐着 方式二&#xff1a;全身或半身 方式三&#xff1a;蓝眼球或不是蓝眼球 …

解决TortoiseGit软件Git Show log时显示Too many files to display的问题

1 问题描述 有时代码提交修改的文件比较多&#xff0c;当查看log时无法显示出来修改的文件列表&#xff0c;如下所示&#xff1a; 2 解决方法 将LogTooManyItemsThreshold尽可能配置得大一些。 三 参考资料 https://gitlab.com/tortoisegit/tortoisegit/-/issues/3878

使用 Docker 部署 ServerStatus 服务器监控系统

一、ServerStatus 介绍 GitHub&#xff1a;https://github.com/cppla/ServerStatus ServerStatus 是一个酷炫高逼格的云探针、云监控、服务器云监控、多服务器探针~。 特性 使用 Rust 完全重写 Server、Client&#xff0c;单个执行文件部署支持上下线和简单自定义规则告警 (T…

01. eNSP环境以及VRP基本使用

eNSP的基本使用 1. eNSP的桥连接1.1. 具体操作&#xff08;1&#xff09;创建环回适配器&#xff08;2&#xff09;设置虚拟网卡&#xff08;3&#xff09;使用eNSP桥接计算机 2. 华为VRP系统2.1. 实验1&#xff1a;VRP的基本操作2.2. 实验2&#xff1a;文件命令&#xff08;1&…

mysql 基础(三)

一、多表设计 数据库设计范式 第一范式(确保每列保持原子性) 第一范式是最基本的范式。如果数据库表中的所有字段值都是不可分解的原子值&#xff0c;就说明该数据库表满足了第一范式。第二范式就是要有主键&#xff0c;要求其他字段都依赖于主键。 没有主键就没有唯一性&…

el-tree勾选后退出再打开显示之前已经勾选的

官网文档 element-ui官网文档有默认展开和默认选中 <el-tree:data"data"show-checkboxnode-key"id":default-expanded-keys"[2, 3]":default-checked-keys"[5]":props"defaultProps"> </el-tree><script>…

力扣518. 零钱兑换 II

动态规划 思路&#xff1a; 假设 dp[i] 为金额 i 使用零钱的组合数&#xff0c;其可以由其中的一种零钱 coin 和 i - coin 组合&#xff1b; 遍历零钱数组&#xff0c;对每一种零钱 coin 进行如下操作&#xff1a; 从 coin 到 amount 金额进行遍历&#xff0c;dp[j] dp[j] d…

Prometheus 薪资翻倍的监控系统?

1. 介绍与架构 Prometheus是一个开源的系统监控和警报工具包&#xff0c;用于收集和存储时间序列数据&#xff0c;包括指标信息、记录时间戳以及可选的键值对标签。许多公司使用Prometheus监控K8s集群。 2. 合适与不合适场景 合适场景 Prometheus适用于记录各种数字时间序列…

web系统架构基于springCloud的各技术栈

博主目前开发的web系统架构是基于springCloud的一套微服务架构。 使用的技术栈&#xff1a;springbootmysqlclickhousepostgresqlredisrocketMqosseurekabase-gatewayapollodockernginxvue的一套web架构。 一、springboot3.0 特性&#xff1a;Spring Boot 3.0提供了许多新特性…

每日一题——LeetCode1313.解压缩编码列表

这么简单的题目要说的这么复杂 nums里每相邻的两个元素nums[i]、nums[j]为一对&#xff0c;nums[i]表示nums[j]的次数 var decompressRLElist function(nums) {let res[]for(let i0,j1;j<nums.length-1;i2,j2){while(nums[i]--){res.push(nums[j])}}return res }; 消耗时…

代码随想录 Leetcode107. 二叉树的层序遍历 II

题目&#xff1a; 代码&#xff08;首刷自解 2024年1月24日&#xff09;&#xff1a; class Solution { public:vector<vector<int>> levelOrderBottom(TreeNode* root) {vector<vector<int>> res {};if(root nullptr) return res;queue<TreeNode…

第11次修改了可删除可持久保存的前端html备忘录:将样式分离,可以自由秒添加秒删除样式

第11次修改了可删除可持久保存的前端html备忘录&#xff1a;将样式分离&#xff0c;可以自由秒添加秒删除样式 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"…

Cesium for Unity包无法加载

太上老君急急如律⚡令⚡ &#x1f959;关闭UnityHub&#x1f9c0;启动梯子&#x1f96a;cmd 启动UnityHub &#x1f959;关闭UnityHub &#x1f9c0;启动梯子 &#x1f96a;cmd 启动UnityHub 把批处理启动文件&#x1f448;中的exe的路径换成自己的安装目录&#xff01;保存…

使用Electron打包vue文件变成exe应用程序

文章目录 一、下载Electron二、修改下载的Electron项目1.修改index.html文件2.修改main.js文件3.修改package.json文件 三、修改vue项目1.修改vite.config.js文件2.修改.env.production文件3.修改auth.js文件4.修改router下得index.js文件6.修改Navbar.vue文件 四、Electron打包…