opencv#33 边缘检测

news2024/11/18 10:40:14

边缘检测原理

     图像的每一行每一列都可以看成是一个连续的信号经过离散后得到的数值,例如上图左侧给出的图像由黑色到白色的一个信号,也就是图像中某一行像素变化是由黑色逐渐到白色,我们将其对应在一个坐标轴中,将像素值的大小对应与我们y轴,我们可以得到中间图片的曲线,曲线就表示这图像某一行像素灰度值的变化关系,当我们对此曲线求导,就可以得到最下面图片的曲线,图像的边缘就是图像中像素灰度值发生变化的像素点的集合,通过计算函数导数的方式可以找到灰度值变化的点,导数值大说明灰度值变化大,导数值为0,说明灰度值没有变化。图像边缘就是对于灰度函数图像中函数值发生突然改变的区域(点的集合)。

      导数(梯度)是微分中的概念,而微分针对的是连续可导的函数,但我们图像是离散的函数,因此对应着差分。微分差分核心思想一致,我们在边缘检测的过程中运用微分的思想来指导,但在实际操作中,我们用差分的形式来实现边缘检测。

      我们计算梯度(导数)时,通常采用差分值来表示导数,差分值就是两个像素的差值,由于梯度对于图像信号来说是一个相对的概念,也就是如果每一个梯度都乘或除以2是没有任何区别的,因此这里我们直接相减就可以。两个像素间的梯度对应在图像中没有意义,因此我们改进的想法是,若有三个像素,第三个像素减去第一个像素除以两者之间的距离,得到的就是第二个像素的梯度,通过这样的方式实现了梯度与像素相对应的方式。

Sobel算子边缘检测

Sobel()

void cv::Sobel(InputArray    src,
               OutputArray   dst,
               int           ddepth,
               int           dx,
               int           dy,
               int           ksize = 3,
               double        scale = 1,
               double        delta = 0,
               int           borderType = BORDER_DEFAULT
              )

·src:待边缘检测图像。

·dst:边缘检测后图像,与输入图像具有相同的尺寸和通道数。

·ddepth:边缘检测后,输出图像的数据类型,由于像素的变化不规律,因此我们用后一时刻的像素减去前一时刻的像素,两个像素的大小未知,可能会出现负值,所以不推荐使用八位无符号整数8U,我们可以使用16S。

·dx,dy:进行索贝尔算子时对于边缘检测的梯度的阶次。

·ksize:使用边缘检测时算子的尺寸大小,默认值为3.

·scale,delta:卷积过程中,对结果进行缩放的系数以及偏移量。例如图像变化平缓,那么得到的系数可能就比较小,直接乘这个系数就可以将梯度扩大,scale默认值为1,也就是不对结果进行缩放,delta默认值为0,也就是不对结果进行偏移。

·borderType:图像外扩标志。

     进行索贝尔边缘检测时,常见的方法是先进行行检测,再进行列检测,也就是对x和y方向分别求导。而在图像的每一点,结合上面求出的导数值,利用勾股定理求出近似梯度,或者是为了提高效率,使用不开平方的近似:利用x和y方向的导数的绝对值之和求出图像每一点的近似值的绝对值。这样可以实现对于图像整体的边缘检测。

     索贝尔算子为了增加梯度的大小,允许计算时三行同时进行计算,例如上图x方向的计算,是有一个主要的计算行(比如中间行),上下两行作为辅助计算,主要行所占权重较大,辅助行所占权重较小,y方向计算也是一样的,对y行进行转置,就可以得到y方向上边缘检测的边缘检测算子。

Scharr算子边缘检测

Scharr()

void cv::Scharr(InputArray    src,
                OutputArray   dst,
                int           ddepth,
                int           dx,
                int           dy,
                double        scale = 1,
                double        delta = 0,
                int           borderType = BORDER_DEFAULT
               )

Scharr算子就是在原先索贝尔算子的基础上对边缘检测的结果进一步加强。也就是得到的边缘响应更强了。

x方向的算子其实就是在索贝尔算子的基础上调整了每一个位置的系数,将主要行设置成10,将辅助行设置成3,这样可以得到一个较大的响应,但坏处是比较微弱的边缘通过此算子计算也会得到较强的响应。对于x方向算子进行转置,我们也可以得到y方向的算子。

两种算子的生成

getDerivKernels()

上面两种算子的函数内部也是调用了此函数。

void cv::getDerivKernels(OutputArray    kx,
                         OutputArray    ky,
                         int            dx,
                         int            dy,
                         int            ksize,
                                        normalize = 
                         bool           false,
                         int            ktype = cv_32F
                        )

·kx:行滤波器系数的输出矩阵,尺寸为ksize*1。

·ky:列滤波器系数的输出矩阵,尺寸为ksize*1。

·dx:X方向导数的阶次。

·dy:y方向导数的阶次。

·ksize:滤波器的大小,可以选择的参数为FILTER_SCHARR(得到的就是Scharr算子),1,3,5,或7(可设定为索贝尔算子)。

·normalize:是否对滤波器系数进行归一化的标志,默认值为false,表示不进行归一化。上面的Sobel算子和Scharr算子都没有进行归一化,可能会使得边缘梯度响应特别大。

·ktype:滤波器系数类型,可以选择CV_32F或CV_64F,默认参数是CV_32F。

这里需要说明一点:当我们选择Sobel算子时,梯度阶数dx,dy <= 尺寸;Scharr算子的dx+dy <= 1。

通过这样的形式规定了结束与算子种类以及尺寸的关系,当我们求取过高的阶数,而采用较小的尺寸,这样是没办法实现过高阶数的求取的。

示例
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv; //opencv的命名空间
using namespace std;


//主函数
int main()
{
	//读取图像,黑白图像边缘检测结果较为明显
	Mat img = imread("E:/opencv/opencv-4.6.0-vc14_vc15/opencv/lenaGray.png");
	if (img.empty())
	{
		cout << "请确认图像文件名称是否正确" << endl;
		return -1;
	}
	Mat resultX, resultY, resultXY;

	//X方向一阶边缘
	Sobel(img, resultX, CV_16S, 1, 0, 1); //尺寸参数设置为1其实是3
	convertScaleAbs(resultX, resultX); //求绝对值函数

	//Y方向一阶边缘
	Sobel(img, resultY, CV_16S, 0, 1, 3); //只不过将上面的dx,dy交换了,尺寸参数设置为1还是3是一致的
	convertScaleAbs(resultY, resultY);

	//整体图像的一阶边缘
	resultXY = resultX + resultY;

	//显示图像
	imshow("resultX", resultX);
	imshow("resultY", resultY);
	imshow("resultXY", resultXY);

	cout << "下面是进行Scharr边缘检测" << endl;
	waitKey(0);//等待函数用于显示图像,按下键盘任意键后退出

	//X方向一阶边缘
	Scharr(img, resultX, CV_16S, 1, 0);
	convertScaleAbs(resultX, resultX); //求绝对值函数

	//Y方向一阶边缘
	Scharr(img, resultY, CV_16S,0,1);
	convertScaleAbs(resultY, resultY);

	//整体图像的一阶边缘
	resultXY = resultX + resultY;

	//显示图像
	imshow("resultX", resultX);
	imshow("resultY", resultY);
	imshow("resultXY", resultXY);

	cout << "接下来生成边缘检测器" << endl;
	waitKey(0);//等待函数用于显示图像,按下键盘任意键后退出

	Mat sobel_x1, sobel_y1;//存放分离的Sobel算子
	Mat scharr_x, scharr_y;//存放分离的Scharr算子
	Mat sobelX1, scharrX;//存放最终算子

	//一阶X方向Sobel算子
	getDerivKernels(sobel_x1, sobel_y1, 1, 0, 3);//一阶尺寸为3
	sobel_x1 = sobel_x1.reshape(CV_8U, 1);
	sobelX1 = sobel_y1 * sobel_x1; //计算滤波器

	//X方向Scharr算子
	getDerivKernels(scharr_x, scharr_y, 1, 0, FILTER_SCHARR);
	scharr_x = scharr_x.reshape(CV_8U, 1);
	scharrX = scharr_y * scharr_x; //计算整体x方向滤波器

	cout << "X方向一阶Sobel算子" << endl << sobelX1 << endl;
	cout << "X方向Scharr算子" << endl << scharrX << endl;

	waitKey(0);//等待函数用于显示图像,按下键盘任意键后退出
	return 0;

}
结果

Sobel边缘检测:

 

Scharr边缘检测:

 

 

生成的边缘检测器:

 

对于Sobel算子边缘检测的X方向,得到的边缘更多的是垂直的边缘,而Y方向,得到的边缘更多的是行方向的边缘,说明X方向和Y方向在进行检测时是各有侧重点的。将两者叠加就可以得到整幅图像的边缘。

对于Scharr算子边缘检测与Sobel是类似的,由于Scharr类型将得到的边缘梯度进行了很大的扩展,因此较小的边缘区域也被显示出来,所以得到的结果中感觉出有很多边缘,实际上它对微弱的边缘进行了扩充,可能两个像素只相差1,但是对结果扩大了很多倍,显示的就较亮,得到整体也是一个更加亮的图像。

生成的两种算子的类型,得到的结果是与上面一致。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1407172.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux下安装 Redis7

Linux下安装 Redis7 三、Linux下安装 Redis7【redis-7.2.4.tar.gz】3.1.下载redis的安装包3.1.1.手动下载Redis压缩包并上传【redis-7.2.4.tar.gz】3.1.2.wget工具下载redis-7.2.4.tar.gz 3.2.将安装包进行解压缩3.3.进入redis的安装包3.4.检查是否有gcc 环境3.5.编译和安装并指…

Java基础数据结构之排序

一.排序 1.什么是稳定性 假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的记录&#xff0c;若经过排序&#xff0c;这些记录的相对次序保持 不变&#xff0c;即在原序列中&#xff0c; r[i]r[j] &#xff0c;且 r[i] 在 r[j] 之前&#xff0c;而在排序后的序…

Oladance、韶音、南卡开放式耳机,究竟谁在性能与音质上达到巅峰?

​开放式耳机作为新型耳机&#xff0c;以其开放性设计、舒适性和音质表现受到用户青睐。然而&#xff0c;随着市场的繁荣&#xff0c;一些品牌为谋取暴利可能采用劣质材料、不合规的工艺标准制作产品&#xff0c;导致耳机做工质量差&#xff0c;音质差。作为资深音频测评师&…

C++入门语法———命名空间,缺省参数,重载函数

文章目录 一.命名空间1.存在意义2.语法使用1.定义命名空间2.使用命名空间的三种方式 二.缺省参数1.全缺省参数2.半缺省参数 三.重载函数1.定义2.重载原理———名字修饰 一.命名空间 1.存在意义 C命名空间的主要意义是为了避免命名冲突&#xff0c;尤其是在大型项目中可能存在…

图卷积网络(GCN)

本文主要分为两部分&#xff0c;第一部分介绍什么是GCN&#xff0c;第二部分将进行详细的数学推导。 一、什么是GCN 1、GCN 概述 本文讲的GCN 来源于论文&#xff1a;SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS&#xff0c;这是在GCN领域最经典的论文…

【Java并发】聊聊活锁

在并发编程中&#xff0c;为了保证数据安全性&#xff0c;所以使用锁机制&#xff0c;syn lock cas 等方式保证&#xff0c;但是也从一定程度降低了性能。而除了这个方面&#xff0c;还引入了锁竞争&#xff0c;比如死锁、活锁。 【Java并发】聊聊死锁 避免死锁&#xff1a;避…

动静态库的理解、制作、使用。

一.动静态库的理解。 1.什么是库&#xff1f; 代码是无穷无尽的&#xff0c;当程序猿在写一些项目时&#xff0c;未必所有代码亲历亲为&#xff0c;他们可以在网上寻找大佬写过的一些有关需求的代码&#xff0c;这些代码可以让他们拿过来直接使用&#xff0c;而省去了许多精力…

Linux中文件属性的获取(stat、chmod、Istat、fstat函数的使用)

修改文件权限 函数如下&#xff1a; chmod/fchmod函数用来修改文件的访问权限: #include <sys/stat.h> int chmod(const char *path, mode_t mode); int fchmod(int fd, mode_t mode); 成功时返回0&#xff1b;出错时返回EOF 注意&#xff1a;在vmware和windows共享的文…

K8S的HPA

horiztal Pod Autoscaling&#xff1a;pod的水平自动伸缩&#xff0c;这是k8s自带的模块&#xff0c;它是根据Pod占用cpu比率到达一定的阀值&#xff0c;会触发伸缩机制 Replication controller 副本控制器&#xff1a;控制pod的副本数 Deployment controller 节点控制器&…

c++ mysql数据库编程(linux系统)

ubuntu下mysql数据库的安装 ubuntu安装mysql&#xff08;图文详解&#xff09;-CSDN博客https://blog.csdn.net/qq_58158950/article/details/135667062?spm1001.2014.3001.5501 项目目录结构 数据库及表结构 public.h //打印错误信息 #ifndef PUBLIC_h #define PUBLIC_H…

BIGVGAN: A UNIVERSAL NEURAL VOCODER WITHLARGE-SCALE TRAINING——TTS论文阅读

笔记地址&#xff1a;https://flowus.cn/share/a16a61b3-fcd0-4e0e-be5a-22ba641c6792 【FlowUs 息流】Bigvgan 论文地址&#xff1a; BigVGAN: A Universal Neural Vocoder with Large-Scale Training Abstract 背景&#xff1a; 最近基于生成对抗网络&#xff08;GAN&am…

JavaScript 执行上下文与作用域

执行上下文与作用域 ​ 执行上下文的概念在 JavaScript 中是颇为重要的。变量或函数的上下文决定了它们可以访问哪些数据&#xff0c;以及它们的行为。每个上下文都有一个关联的变量对象&#xff08;variable object&#xff09;&#xff0c; 而这个上下文中定义的所有变量和函…

Vue基础–列表渲染-key的原理

一、v-for列表渲染 1.列表渲染 在真实开发中&#xff0c;我们往往会从服务器拿到一组数据&#xff0c;并且需要对其进行渲染。 这个时候我们可以使用v-for来完成&#xff1b; v-for类似于JavaScript的for循环&#xff0c;可以用于遍历一组数据&#xff1b; 2.v-for基本使用…

QT发送request请求

时间记录&#xff1a;2024/1/23 一、使用步骤 &#xff08;1&#xff09;pro文件中添加network模块 &#xff08;2&#xff09;创建QNetworkAccessManager网络管理类对象 &#xff08;3&#xff09;创建QNetworkRequest网络请求对象&#xff0c;使用setUrl方法设置请求url&am…

142基于matlab的移动力过简支梁程序

基于matlab的移动力过简支梁程序&#xff0c;算法采用newmark-belta法&#xff0c;输出简支梁&#xff0c;求解静力位移&#xff0c;自振特性&#xff0c;动力特性。可调节简支梁参数。程序已调通&#xff0c;可直接运行。 142 matlab简支梁自振特性 (xiaohongshu.com)

java集合ArrayList和HashSet的fail-fast与fail-safe以及ConcurrentModificationException

在 java 的集合工具类中&#xff0c;例如对 ArrayList 或者 HashSet 进行删除元素后再遍历元素时&#xff0c;会抛出 ConcurrentModificationException 异常。 fail-fast ArrayList public class TestList {public static void main(String[] args) {ArrayList<Integer>…

02-echarts如何画轴心轨迹图

echarts如何画轴心轨迹图 一、创建图表盒子1、创建盒子2、定义数据1、定义x&#xff0c;y点数据2、集合x,y点数据3、组件使用1、引入2、编写获取半径方法2、编写获取角度方法3、转换角度&#xff0c;半径数组3、初始化图表方法4、调用方法 二、全部代码1、dataXY.js2、组件中代…

Qt 多次绘图

使用Qt 的时候发现&#xff1a; 背景&#xff1a;自己定义一个类&#xff0c;把它和某个ui文件绑定。(类似 Qt creator 默认创建的工程&#xff09;问题&#xff1a;当鼠标在窗口内单击的时候会触发2次绘图。&#xff1f;难道不应该是一次吗&#xff1f; 于是开始了如下的测试…

SQL Server多数据表之间的数据查询和分组查询

文章目录 一、多数据表之间的数据查询1.1内连接查询&#xff08;Inner join&#xff09;1.2 左外连接 (LEFT JOIN):1.3右外连接 (RIGHT JOIN):1.4. 全外连接 (FULL OUTER JOIN):1.5 交叉连接 (CROSS JOIN):1.6 自连接 (SELF JOIN):1.7 子查询: 二、分组查询2.1 分组查询2.2 查询…

ai伪原创生成器app,一键生成原创文章

近年来&#xff0c;随着人工智能技术的飞速发展&#xff0c;AI伪原创生成器App已经成为了许多写手和创作者们的新宠。这款AI伪原创生成器App以其一键生成原创文章的快速便捷性&#xff0c;正在引起广泛的关注和使用。下面跟随小编一起来了解下吧&#xff01; 随着互联网的普及&…